Probing the structural characteristics of biomolecular ions in the gas phase following native mass spectrometry (nMS) is of great interest, because noncovalent interactions, and thus native fold features, are believed to be largely retained upon desolvation. However, the conformation usually depends heavily on the charge state of the species investigated. In this study, we combine transition metal ion Förster resonance energy transfer (tmFRET) and ion mobility-mass spectrometry (IM-MS) with molecular dynamics (MD) simulations to interrogate the β-hairpin structure of GB1p in vacuo.
View Article and Find Full Text PDFRecent therapeutic strategies suggest that small peptides can act as aggregation inhibitors of monomeric amyloid-β (Αβ) by inducing structural rearrangements upon complexation. However, characterizing the binding events in such dynamic and transient noncovalent complexes, especially in the presence of natively occurring metal ions, remains a challenge. Here, we deploy a combined transition metal ion Förster resonance energy transfer (tmFRET) and native ion mobility-mass spectrometry (IM-MS) approach to characterize the structure of mass- and charge-selected Aβ complexes with Cu(II) ions (a quencher) and a potential aggregation inhibitor, a small neuropeptide named leucine enkephalin (LE).
View Article and Find Full Text PDFMass spectrometry is a powerful technique for the structural and functional characterization of biomolecules. However, it remains challenging to accurately gauge the gas-phase structure of biomolecular ions and assess to what extent native-like structures are maintained. Here we propose a synergistic approach which utilizes Förster resonance energy transfer and two types of ion mobility spectrometry (i.
View Article and Find Full Text PDFThe conformation and function of somatostatin (SST), a cyclic neuropeptide, was recently found to be altered in the presence of Cu(II) ions, which leads to self-aggregation and loss of biological function as a neurotransmitter. However, the impact of Cu(II) ions on the structure and function of SST is not fully understood. In this work, transition metal ion Förster resonance energy transfer (tmFRET) and native ion mobility-mass spectrometry (IM-MS) were utilized to study the structures of well-defined gas-phase ions of SST and of a smaller analogue, octreotide (OCT).
View Article and Find Full Text PDFAbove-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint ( ˣ L.
View Article and Find Full Text PDFNative mass spectrometry has emerged as an important tool for gas-phase structural biology. However, the conformations that a biomolecular ion adopts in the gas phase can differ from those found in solution. Herein, we report a synergistic, native ion mobility-mass spectrometry (IM-MS) and transition metal ion Förster resonance energy transfer (tmFRET)-based approach to probe the gas-phase ion structures of a nonstapled peptide (nsp; Ac-CAARAAHAAAHARARA-NH) and a stapled peptide (sp; Ac-CARAHAAAHARARA-NH).
View Article and Find Full Text PDF