X-ray photoelectron spectroscopy is an indispensable technique for the quantitative determination of sample composition and electronic structure in diverse research fields. Quantitative analysis of the phases present in XP spectra is usually conducted manually by means of empirical peak fitting performed by trained spectroscopists. However, with recent advancements in the usability and reliability of XPS instruments, ever more (inexperienced) users are creating increasingly large data sets that are harder to analyze by hand.
View Article and Find Full Text PDFThe influence of the crystallographic orientation on surface segregation and alloy formation in model PdCu methanol synthesis catalysts was investigated using near-ambient pressure X-ray photoelectron spectroscopy under CO hydrogenation conditions. Combined with scanning tunneling microscopy and density functional theory calculations, the study showed that submonolayers of Pd undergo spontaneous alloy formation on Cu(110) and Cu(100) surfaces in vacuum, whereas they do not form an alloy on Cu(111). Upon heating in H, inward diffusion of Pd into the Cu lattice is favored, facilitating alloying on all Cu surfaces.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2019
Surface segregation and restructuring in size-selected CuNi nanoparticles were investigated via near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at various temperatures in different gas environments. Particularly in focus were structural and morphological changes occurring under CO hydrogenation conditions in the presence of carbon monoxide (CO) in the reactant gas mixture. Nickel surface segregation was observed when only CO was present as adsorbate.
View Article and Find Full Text PDFWe explored the size-dependent activity and selectivity of Zn nanoparticles (NPs) for the electrochemical CO reduction reaction (CORR). Zn NPs ranging from 3 to 5 nm showed high activity and selectivity (∼70%) for CO production, whereas those above 5 nm exhibited bulk-like catalytic properties. In addition, a drastic increase in hydrogen production was observed for the Zn NPs below 3 nm, which is associated with the enhanced content of low-coordinated sites on small NPs.
View Article and Find Full Text PDFSurface segregation, restructuring, and sintering phenomena in size-selected copper-nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy.
View Article and Find Full Text PDF