Self-consistent-field and multireference single- and double-excitation configuration interaction (CI) calculations have been carried out for various electronic states of the beryllium oxide molecule and their positron-attached counterparts. Particular emphasis is placed on the correlation between the polarity of a given BeO state and the magnitude of the positron binding energy as the internuclear distance is varied. Potential curves are computed for all BeO states that correlate with the first three atomic limits for this system and good agreement is found between the experimental and calculated spectroscopic constants in all cases.
View Article and Find Full Text PDFConfiguration interaction calculations of the ground and excited states of the H2CO molecule adsorbed on the Ag(111) surface have been carried out to study the photoinduced dissociation process leading to polymerization of formaldehyde. The metal-adsorbate system has been described by the embedded cluster and multireference configuration interaction methods. The pi electron-attachment H2CO- and n-pi* internally excited H2CO* states have been considered as possible intermediates.
View Article and Find Full Text PDFAb initio multireference single- and double-excitation configuration interaction (MRD-CI) calculations are carried out to study the interactions of positrons with the members of the alkali hydride class of molecules. A new computer program has been constructed for this purpose that makes use of the Table-Direct-CI method for construction of the required Hamiltonian matrixes and electronic/positronic wave functions. The calculations indicate that the binding energy (positron affinity PA) of a single positron to these systems increases by an increment of 0.
View Article and Find Full Text PDF