Rapid and resource-efficient sample processing, high throughput, and high robustness are critical for effective scientific and clinical application of advanced antigen-specific immunoassays. Traditionally, such immunoassays, especially antigen-specific T-cell analysis by flow cytometry or enzyme-linked immunosorbent spot assays, often rely on the isolation of peripheral blood mononuclear cells. This process is time-consuming, subject to many pre-analytic confounders, and requires large blood volumes.
View Article and Find Full Text PDFIntroduction: Pre-existent pools of coronavirus-specific or cross-reactive T cells were shown to shape the development of cellular and humoral immune responses after primary mRNA vaccination against SARS-CoV-2. However, the cellular determinants of responses to booster vaccination remain incompletely understood. Therefore, we phenotypically and functionally characterized spike antigen-specific T helper (Th) cells in healthy, immunocompetent individuals and correlated the results with cellular and humoral immune responses to BNT162b2 booster vaccination over a six-month period.
View Article and Find Full Text PDFOccupational mold exposure can lead to -associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to -associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls.
View Article and Find Full Text PDFDeeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to antigens.
View Article and Find Full Text PDFcauses life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti- defense and have generated interest as a potential immunotherapeutic approach in IA.
View Article and Find Full Text PDFWe compared the feasibility of 4 cytomegalovirus (CMV)- and -reactive T-cell immunoassay protocols in allogenic stem cell transplant recipients. While enzyme-linked immunospot performed best overall, logistically advantageous whole blood-based assays performed comparably in patients with less severe lymphocytopenia. CMV-induced interferon-gamma responses correlated strongly across all protocols and showed high concordance with serology.
View Article and Find Full Text PDFHigh-throughput RNA sequencing (RNA-seq) is routinely applied to study diverse biological processes; however, when performed separately on interacting organisms, systemic noise intrinsic to RNA extraction, library preparation, and sequencing hampers the identification of cross-species interaction nodes. Here, we develop triple RNA-seq to simultaneously detect transcriptomes of monocyte-derived dendritic cells (moDCs) infected with the frequently co-occurring pulmonary pathogens Aspergillus fumigatus and human cytomegalovirus (CMV). Comparing expression patterns after co-infection with those after single infections, our data reveal synergistic effects and mutual interferences between host responses to the two pathogens.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2020
Invasive pulmonary aspergillosis and mucormycosis are life-threatening complications in immunocompromised patients. A rapid diagnosis followed by early antifungal treatment is essential for patient survival. Given the limited spectrum of biomarkers for invasive mold infections, recent studies have proposed the use of radiolabeled siderophores or antibodies as molecular probes to increase the specificity of radiological findings by nuclear imaging modalities.
View Article and Find Full Text PDFFlow cytometric quantification of CD154 mould specific T-cells in antigen-stimulated peripheral blood mononuclear cells (PBMCs) or whole blood has been described as a supportive biomarker to diagnose invasive mould infections and to monitor therapeutic outcomes. As patients at risk frequently receive immunosuppressive and antifungal medication, this study compared the matrix-dependent impact of representative drugs on CD154 T-cell detection rates. PBMCs and whole blood samples from healthy adults were pre-treated with therapeutic concentrations of liposomal amphotericin B, voriconazole, posaconazole, cyclosporine A (CsA) or prednisolone.
View Article and Find Full Text PDFCD154+ mould-reactive T cells were proposed as a novel biomarker in the diagnosis of invasive mycoses. As PBMC-based protocols for flow cytometric quantification of these cells are logistically challenging and susceptible to preanalytic delays, this study evaluated and optimized a whole blood-based method for the detection of mould-reactive T cells. Blood collection tubes containing costimulatory antibodies and Aspergillus fumigatus mycelial lysates were inoculated with heparinized whole blood from healthy adults, and detection rates of CD154+/CD4+A.
View Article and Find Full Text PDFUnderstanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to , and .
View Article and Find Full Text PDFMold specific T-cells have been described as a supportive biomarker to monitor invasive mycoses and mold exposure. This study comparatively evaluated frequencies and cytokine profiles of Aspergillus fumigatus and Mucorales reactive T-cells depending on environmental mold exposure. Peripheral blood mononuclear cells (PBMCs) obtained from 35 healthy donors were stimulated with mycelial lysates of A.
View Article and Find Full Text PDFInteractions between fungal pathogens such as Aspergillus fumigatus with host alveolar epithelium and innate immune cells are crucial in the defense against opportunistic fungal infections. In this study a simplified Transwell system with a confluent layer of A549 cells acted as a model for the alveolar surface. A.
View Article and Find Full Text PDFMould-specific T cells detectable by flow cytometry or ELISPOT were proposed as a novel biomarker in invasive aspergillosis. To define protocols facilitating sample shipment and longitudinal analysis, this study evaluated the susceptibility of different functional assays for A. fumigatus-specific T-cell quantification and characterisation to pre-analytic delays.
View Article and Find Full Text PDFInvasive aspergillosis remains a deadly disease in immunocompromised patients, whereas the combination of an exaggerated immune response and continuous exposure lead to various hyperinflammatory diseases. This pilot study aimed to gain an overview of the intra- and inter-individual variability in Aspergillus fumigatus reactive T-helper cells in healthy adults and the correlation with environmental mould exposure. In this flow cytometric study, the frequencies of CD154 A.
View Article and Find Full Text PDF