Publications by authors named "Lukas Ondic"

ZrN nanofluids may exhibit unique optoelectronic properties because of the matching of the solar spectrum with interband transitions and localized surface plasmon resonance (LSPR). Nevertheless, these nanofluids have scarcely been investigated, mainly because of the complexity of the current synthetic routes that involve aggressive chemicals and high temperatures. This work aims to validate reactive dc magnetron sputtering of zirconium in Ar/N as an environmentally benign, annealing-free method to produce 22 nm-sized, highly crystalline, stoichiometric, electrically conductive, and plasmonic ZrN nanoparticles (NPs) of cubic shape and to load them into vacuum-compatible liquids of different chemical compositions (polyethylene glycol (PEG), paraffin, and pentaphenyl trimethyl trisiloxane (PTT)) in one step.

View Article and Find Full Text PDF

Diamond thin films can be, at a relatively low-cost, prepared with a high-density of light-emitting negatively charged silicon vacancy (SiV) centers, which opens up the possibility of their application in photonics or sensing. The films are composed of diamond grains with both the SiV centers and sp-carbon phase, the ratio of these two components being dependent on the preparation conditions. The grain surface and the sp-related defects might act as traps for the carriers excited within the SiV centers, consequently decreasing their internal photoluminescence (PL) quantum efficiency.

View Article and Find Full Text PDF

Apart from the frequently used high-temperature annealing of detonation nanodiamonds (DNDs) in an inert environment, laser irradiation of DNDs in a liquid can be effectively used for onion-like carbon (OLC) formation. Here, we used fully de-aggregated hydrogenated DNDs (H-DNDs) dispersed in ethanol, which were irradiated for up to 60 min using a 532 nm NdYAG laser with an energy of 150 mJ in a pulse (5 J/cm) at a pulse duration of 10 ns and a repetition rate of 10 Hz. We investigated the DND surface chemistry, zeta potential, and structure as a function of laser irradiation time.

View Article and Find Full Text PDF

Diamond optical centers have recently emerged as promising single-photon sources for quantum photonics. Particularly, negatively charged silicon vacancy (SiV-) centers show great promise due to their narrow zero-phonon emission line present also at room temperature. However, due to fabrication tolerances it is challenging to prepare directly photonic structures with optical modes spectrally matching the emission of SiV- centers.

View Article and Find Full Text PDF

We investigate electroluminescence of single molecular emitters on NaCl on Ag(111) and Au(111) with submolecular resolution in a low-temperature scanning probe microscope with tunneling current, atomic force, and light detection capabilities. The role of the tip state is studied in the photon maps of a prototypical emitter, zinc phthalocyanine (ZnPc), using metal and CO-metal tips. CO-functionalization is found to have an impact on the resolution and contrast of the photon maps due to the localized overlap of the p-orbitals on the tip with the molecular orbitals of the emitter.

View Article and Find Full Text PDF

The forces acting on optically trapped particles are commonly assumed to be conservative. Nonconservative scattering forces induce toroidal currents in overdamped liquid environments, with negligible effects on position fluctuations. However, their impact in the underdamped regime remains unexplored.

View Article and Find Full Text PDF

Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7⁻40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps.

View Article and Find Full Text PDF

We have fabricated two-dimensional photonic crystals (PhCs) on the surface of Si nanocrystal-rich SiO layers with the goal to maximize the photoluminescence extraction efficiency in the normal direction. The fabricated periodic structures consist of columns ordered into square and hexagonal pattern with lattice constants computed such that the red photoluminescence of Si nanocrystals (SiNCs) could couple to leaky modes of the PhCs and could be efficiently extracted to surrounding air. Samples having different lattice constants and heights of columns were investigated in order to find the configuration with the best performance.

View Article and Find Full Text PDF

Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.

View Article and Find Full Text PDF

Silicon vacancy (SiV) centers are optically active defects in diamond. The SiV centers, in contrast to nitrogen vacancy (NV) centers, possess narrow and efficient luminescence spectrum (centered at ≈738 nm) even at room temperature, which can be utilized for quantum photonics and sensing applications. However, most of light generated in diamond is trapped in the material due to the phenomenon of total internal reflection.

View Article and Find Full Text PDF

High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized.

View Article and Find Full Text PDF

Silicon nanocrystals (SiNCs) smaller than 5 nm are a material with strong visible photoluminescence (PL). However, the physical origin of the PL, which, in the case of oxide-passivated SiNCs, is typically composed of a slow-decaying red-orange band (S-band) and of a fast-decaying blue-green band (F-band), is still not fully understood. Here we present a physical interpretation of the F-band origin based on the results of an experimental study, in which we combine temperature (4-296 K), temporally (picosecond resolution) and spectrally resolved luminescence spectroscopy of free-standing oxide-passivated SiNCs.

View Article and Find Full Text PDF

Detailed analysis of a band diagram of a photonic crystal (PhC) slab prepared on a nano-diamond layer is presented. Even though the PhC is structurally imperfect, the existence of leaky modes, determined both theoretically and experimentally in the broad spectral region, implies that an efficient light interaction with a material periodicity occurs in the sample. It is shown that the luminescence emission spectrum of a light source placed directly on the PhC surface can be modified by employing the optical modes of the studied structure.

View Article and Find Full Text PDF

Diamond-based materials possess many unique properties, one of them being a broad-band visible photoluminescence due to a variety of color centers. However, a high material refractive index makes the extraction of photoluminescence (PL) from a diamond layer inefficient. In this paper, we show that by periodical nanopatterning of the film's surface into a form of two-dimensional photonic crystal, the extraction of PL can be strongly enhanced within the whole visible spectrum compared to the extraction of PL in a pristine or randomly nanopatterned film.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1l94o90nl8k97nb538m92r4tmitm3rss): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once