Publications by authors named "Lukas Mai"

The synthesis and characterization of platinum(II) and palladium(II) complexes bearing two (dimers Pt(L)Cl and Pd(L)Cl), one (monomers Pt(L)(L)Cl and Pd(L)(L)Cl), or no (reference compounds Pt(L)Cl and Pd(L)Cl) pentacene-based pyridyl ligands are presented. Photophysical properties of the dimers are probed by means of steady-state and time-resolved transient absorption measurements in comparison to the monomer and model compounds. Our results document that despite enhanced spin-orbit coupling from the presence of heavy atoms, intramolecular singlet fission (iSF) is not challenged by intersystem crossing.

View Article and Find Full Text PDF

The intrinsic properties of semiconducting oxides having nanostructured morphology are highly appealing for gas sensing. In this study, the fabrication of nanostructured WO thin films with promising surface characteristics for hydrogen (H ) gas sensing applications is accomplished. This is enabled by developing a chemical vapor deposition (CVD) process employing a new and volatile tungsten precursor bis(diisopropylamido)-bis(tert-butylimido)-tungsten(VI), [W(N Bu) (N Pr ) ].

View Article and Find Full Text PDF

The combined atomic/molecular layer deposition (ALD/MLD) technique is emerging as a state-of-the-art synthesis route for new metal-organic thin-film materials with a multitude of properties by combining those of the inorganic and the organic material. A major part of the studies so far reported have focused on aluminum or zinc alkyls, so-called alucone and zincone films, typically grown from trimethyl aluminum (TMA) or diethyl zinc (DEZ) as the metal-bearing precursor, and a simple aliphatic bi-functional alcohol molecule such as ethylene glycol (EG) as the organic precursor. However, these common precursors possess certain disadvantages: both TMA and DEZ are pyrophoric, DEZ being additionally thermally unstable, while EG has a strong tendency for various unideal reaction modes.

View Article and Find Full Text PDF

Graphene and other single-layer structures are pursued as high-flux separation membranes, although imparting porosity endangers their crystalline integrity. In contrast, bilayer silica composed of corner-sharing (SiO) units is foreseen to be permeable for small molecules due to its intrinsic lattice openings. This study sheds light on the mass transport properties of freestanding 2D SiO upon using atomic layer deposition (ALD) to grow large-area films on Au/mica substrates followed by transfer onto SiN windows.

View Article and Find Full Text PDF

The vapor phase infiltration (VPI) process of trimethyl aluminum (TMA) into poly(4-acetoxystyrene) (POAcSt), poly(nonyl methacrylate) (PNMA) and poly(-butyl methacrylate) (PtBMA) is reported. Depth-profiling X-ray photoelectron spectroscopy (XPS) measurements are used for the first time for VPI based hybrid materials to determine the aluminum content over the polymer film thickness. An understanding of the reaction mechanism on the interaction of TMA infiltrating into the different polymers was obtained through infrared (IR) spectroscopy supported by density functional theory (DFT) studies.

View Article and Find Full Text PDF

Herein, we present a photocatalyzed two-carbon ring expansion of β-dicarbonyl compounds with unactivated olefins that provides facile access to medium-sized rings. Selective sensitization of the substoichiometric enol tautomer enables reactivity of substrates incompatible with the classical De Mayo reaction conditions. Key to success is the identification of the metal-based sensitizer fac-[Ir(CF -pmb) ], which can be excited using common near-visible LEDs, and possesses a high triplet excited state energy of 73.

View Article and Find Full Text PDF

Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized.

View Article and Find Full Text PDF

The identification of bis-3-(N,N-dimethylamino)propyl zinc ([Zn(DMP) ], BDMPZ) as a safe and potential alternative to the highly pyrophoric diethyl zinc (DEZ) as atomic layer deposition (ALD) precursor for ZnO thin films is reported. Owing to the intramolecular stabilization, BDMPZ is a thermally stable, volatile, nonpyrophoric solid compound, however, it possesses a high reactivity due to the presence of Zn-C and Zn-N bonds in this complex. Employing this precursor, a new oxygen plasma enhanced (PE)ALD process in the deposition temperature range of 60 and 160 °C is developed.

View Article and Find Full Text PDF

New precursor chemistries for the atomic layer deposition (ALD) of aluminium oxide are reported as potential alternatives to the pyrophoric trimethylaluminium (TMA) which is to date a widely used Al precursor. Combining the high reactivity of aluminium alkyls employing the 3-(dimethylamino)propyl (DMP) ligand with thermally stable amide ligands yielded three new heteroleptic, non-pyrophoric compounds [Al(NMe ) (DMP)] (2), [Al(NEt ) (DMP)] (3, BDEADA) and [Al(NiPr ) (DMP)] (4), which combine the properties of both ligand systems. The compounds were synthesized and thoroughly chemically characterized, showing the intramolecular stabilization of the DMP ligand as well as only reactive Al-C and Al-N bonds, which are the key factors for the thermal stability accompanied by a sufficient reactivity, both being crucial for ALD precursors.

View Article and Find Full Text PDF

A bottom-up process from precursor development for tin to plasma-enhanced atomic layer deposition (PEALD) for tin(IV) oxide and its successful implementation in a working thin-film transistor device is reported. PEALD of tin(IV) oxide thin films at low temperatures down to 60 °C employing tetrakis-(dimethylamino)propyl tin(IV) [Sn(DMP)] and oxygen plasma is demonstrated. The liquid precursor has been synthesized and thoroughly characterized with thermogravimetric analyses, revealing sufficient volatility and long-term thermal stability.

View Article and Find Full Text PDF

Decomposition of rare-earth tris(,'-diisopropyl-2-methylamidinato)metal(III) complexes [RE{MeC(N(iPr))}] (RE(amd); RE = Pr(III), Gd(III), Er(III)) and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)europium(III) (Eu(dpm)) induced by microwave heating in the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIm][NTf]) and in propylene carbonate (PC) yield oxide-free rare-earth metal nanoparticles (RE-NPs) in [BMIm][NTf] and PC for RE = Pr, Gd and Er or rare-earth metal-fluoride nanoparticles (REF-NPs) in the fluoride-donating IL [BMIm][BF] for RE = Pr, Eu, Gd and Er. The crystalline phases and the absence of significant oxide impurities in RE-NPs and REF-NPs were verified by powder X-ray diffraction (PXRD), selected area electron diffraction (SAED) and high-resolution X-ray photoelectron spectroscopy (XPS). The size distributions of the nanoparticles were determined by transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to an average diameter of (11 ± 6) to (38 ± 17) nm for the REF-NPs from [BMIm][BF].

View Article and Find Full Text PDF

We report a new atomic layer deposition (ALD) process for yttrium oxide (YO) thin films using tris(,-diisopropyl-2-dimethylamido-guanidinato) yttrium(iii) [Y(DPDMG)] which possesses an optimal reactivity towards water that enabled the growth of high quality thin films. Saturative behavior of the precursor and a constant growth rate of 1.1 Å per cycle confirm the characteristic self-limiting ALD growth in a temperature range from 175 °C to 250 °C.

View Article and Find Full Text PDF

A study on the plasma-enhanced atomic layer deposition of amorphous inorganic oxides SiO and AlO on polypropylene (PP) was carried out with respect to growth taking place at the interface of the polymer substrate and the thin film employing in situ quartz-crystal microbalance (QCM) experiments. A model layer of spin-coated PP (scPP) was deposited on QCM crystals prior to depositions to allow a transfer of findings from QCM studies to industrially applied PP foil. The influence of precursor choice (trimethylaluminum (TMA) vs [3-(dimethylamino)propyl]-dimethyl aluminum (DMAD)) and of plasma pretreatment on the monitored QCM response was investigated.

View Article and Find Full Text PDF

Identification and synthesis of intramolecularly donor-stabilized aluminium(III) complexes, which contain a 3-(dimethylamino)propyl (DMP) ligand, as novel atomic layer deposition (ALD) precursors has enabled the development of new and promising ALD processes for Al O thin films at low temperatures. Key for this promising outcome is the nature of the ligand combination that leads to heteroleptic Al complexes encompassing optimal volatility, thermal stability and reactivity. The first ever example of the application of this family of Al precursors for ALD is reported here.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: