Enediyne natural products are renowned for their potent cytotoxicities but the biosynthesis of their defining 1,5-diyne-3-ene core moiety remains largely enigmatic. Since the discovery of the enediyne polyketide synthase cassette in 2002, genome sequencing has revealed thousands of distinct enediyne biosynthetic gene clusters, each harboring the conserved enediyne polyketide synthase cassette. Here we report that (1) the products of this cassette are an iodoheptaene, a diiodotetrayne and two pentaynes; (2) the diiodotetrayne represents a common biosynthetic intermediate for all known enediynes; and (3) cryptic iodination can be exploited to increase enediyne titers.
View Article and Find Full Text PDFActinobacteria, the bacterial phylum most renowned for natural product discovery, has been established as a valuable source for drug discovery and biotechnology but is underrepresented within accessible genome and strain collections. Herein, we introduce the Natural Products Discovery Center (NPDC), featuring 122,449 strains assembled over eight decades, the genomes of the first 8490 NPDC strains (7142 Actinobacteria), and the online NPDC Portal making both strains and genomes publicly available. A comparative survey of RefSeq and NPDC Actinobacteria highlights the taxonomic and biosynthetic diversity within the NPDC collection, including three new genera, hundreds of new species, and ~7000 new gene cluster families.
View Article and Find Full Text PDFFifteen type I terpene synthase homologs from diverse actinobacteria that were selected based on a phylogenetic analysis of more than 4000 amino acid sequences were investigated for their products. For four enzymes with functions not previously reported from bacterial terpene synthases the products were isolated and their structures were elucidated by NMR spectroscopy, resulting in the discovery of the first terpene synthases for (+)-δ-cadinol and (+)-α-cadinene, besides the first two bacterial (-)-amorpha-4,11-diene synthases. For other terpene synthases with functions reported from bacteria before the products were identified by GC-MS.
View Article and Find Full Text PDFTerpenes constitute the largest class of natural products. Their skeletons are formed by terpene cyclases (TCs) from acyclic oligoprenyl diphosphates through sophisticated enzymatic conversions. These enzyme reactions start with substrate ionization through diphosphate abstraction, followed by a cascade reaction via cationic intermediates.
View Article and Find Full Text PDFAll known triterpenes are generated by triterpene synthases (TrTSs) from squalene or oxidosqualene. This approach is fundamentally different from the biosynthesis of short-chain (C-C) terpenes that are formed from polyisoprenyl diphosphates. In this study, two fungal chimeric class I TrTSs, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthase (MpMS), were characterized.
View Article and Find Full Text PDFThe dauc-8-en-11-ol synthase from Streptomyces venezuelae was investigated for its catalytic activity towards alternative terpene precursors, specifically designed to enable new cyclisation pathways. Exchange of aromatic amino acid residues at the enzyme surface by site-directed mutagenesis led to a 4-fold increase of the yield in preparative scale incubations, which likely results from an increased enzyme stability instead of improved enzyme kinetics.
View Article and Find Full Text PDFThe flavobacterium Chryseobacterium polytrichastri was investigated for its volatile profile by use of a closed-loop stripping apparatus (CLSA) and subsequent GC-MS analysis. The analyses revealed a rich headspace extract with 71 identified compounds. Compound identification was based on a comparison to library mass spectra for known compounds and on a synthesis of authentic standards for unknowns.
View Article and Find Full Text PDFTwo bacterial diterpene synthases (DTSs) from Chryseobacterium were characterised. The first enzyme yielded the new compound chryseodiene that closely resembles the known fusicoccane diterpenes from fungi, but its experimentally and computationally studied cyclisation mechanism is fundamentally different to the mechanism of fusicoccadiene synthase. The second enzyme produced wanjudiene, a diterpene hydrocarbon with a new skeleton, besides traces of the enantiomer of bonnadiene that was recently discovered from Allokutzneria albata.
View Article and Find Full Text PDFA sesquiterpene synthase from Streptomyces bungoensis was characterised and produces the new compound bungoene. The enzyme mechanism was deeply investigated using isotopically labelled substrates. Two other enzymes from S.
View Article and Find Full Text PDFEctoine is a solute compatible with the physiologies of both prokaryotic and eukaryotic cells and is widely synthesized by bacteria as an osmotic stress protectant. Because it preserves functional attributes of proteins and macromolecular complexes, it is considered a chemical chaperone and has found numerous practical applications. However, the mechanism of its biosynthesis is incompletely understood.
View Article and Find Full Text PDFMethylated analogues of isopentenyl diphosphate were synthesised and enzymatically incorporated into methylated terpenes. A detailed stereochemical analysis of the obtained products is presented. The methylated terpene precursors were also used in conjunction with various isotopic labellings to gain insights into the mechanisms of their enzymatic formation.
View Article and Find Full Text PDFThe skeletons of some classes of terpenoids are unusual in that they contain a larger number of Me groups (or their biosynthetic equivalents such as olefinic methylene groups, hydroxymethyl groups, aldehydes, or carboxylic acids and their derivatives) than provided by their oligoprenyl diphosphate precursor. This is sometimes the result of an oxidative ring-opening reaction at a terpene-cyclase-derived molecule containing the regular number of Me group equivalents, as observed for picrotoxan sesquiterpenes. In this study a sesquiterpene cyclase from Trichoderma spp.
View Article and Find Full Text PDFThe volatiles from an isolate of the fungus , obtained from a specimen collected in China, were collected by use of a closed-loop stripping apparatus and analysed by GC-MS. A total number of 33 compounds from different classes were rigorously identified by comparison of mass spectra to library spectra and of retention indices to tabulated data from the literature. For unknown compounds structural suggestions were delineated from the mass spectra and verified by chemical synthesis of reference materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2019
A diterpene synthase from Saccharopolyspora spinosa was found to convert geranylgeranyl diphosphate into the new natural products spinodiene A and B, accompanied by 2,7,18-dolabellatriene. The structures and the formation mechanism of the enzyme products were investigated by extensive isotopic labelling experiments, which revealed an unusual branched isomerisation mechanism towards the neutral intermediate 2,7,18-dolabellatriene. A Diels-Alder reaction was used to convert the main diterpene product with its rare conjugated diene moiety into formal sesterterpene alcohols.
View Article and Find Full Text PDFBased on a terpenoid overproduction platform in yeast for genome mining, a chimeric diterpene synthase from the endophytic fungus Colletotrichum gloeosporioides ES026 was characterized as the (5R,12R,14S)-dolasta-1(15),8-diene synthase. The absolute configuration was independently verified through the use of enantioselectively deuterated terpene precursors, which unequivocally established the predicted C1-III-IV cyclization mode for this first characterized clade II-D enzyme. Extensive isotopic labeling experiments and isolation of the intermediate (1R)-δ-araneosene supported the proposed cyclization mechanism.
View Article and Find Full Text PDFThe substrate flexibility of eight purified sesquiterpene cyclases was evaluated using six new heteroatom-modified farnesyl pyrophosphates, and the formation of six new heteroatom-modified macrocyclic and tricyclic sesquiterpenoids is described. GC-O analysis revealed that tricyclic tetrahydrofuran exhibits an ethereal, peppery, and camphor-like olfactoric scent.
View Article and Find Full Text PDFTwo diterpene synthases from Allokutzneria albata were studied for their products, resulting in the identification of the new compound bonnadiene from the first enzyme. Although phylogenetically unrelated to fungal phomopsene synthase, the second enzyme produced a mixture of phomopsene and a biosynthetically linked new compound, allokutznerene, as well as spiroviolene. Both enzymes were subjected to in-depth mechanistic studies involving isotopic labelling experiments, metal-cofactor variation, and site-directed mutagenesis.
View Article and Find Full Text PDFFusarium culmorum is one of the most important fungal plant pathogens that causes diseases on a wide diversity of cereal and non-cereal crops. We report herein for the first time the genome sequence of F. culmorum strain PV and its associated secondary metabolome that plays a role in the interaction with other microorganisms and contributes to its pathogenicity on plants.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2018
Two bacterial diterpene synthases from the actinomycete Allokutzneria albata were investigated, resulting in the identification of the structurally unprecedented compound spiroalbatene from the first and cembrene A from the second enzyme. Both enzymes were thoroughly investigated in terms of their mechanisms by isotope labeling experiments, site-directed mutagenesis, and variation of the metal cofactors and pH value. For spiroalbatene synthase, the pH- and Mn -dependent formation of the side product thunbergol was observed, which is biosynthetically linked to spiroalbatene.
View Article and Find Full Text PDFA terpene synthase from the marine bacterium Streptomyces xinghaiensis has been characterised, including a full structure elucidation of its products from various substrates and an in-depth investigation of the enzyme mechanism by isotope labelling experiments, metal cofactor variations, and mutation experiments. The results revealed an interesting dependency of Mn catalysis on the presence of Asp-217, a residue that is occupied by a highly conserved Glu in most other bacterial terpene synthases.
View Article and Find Full Text PDFDimethylsulfoniopropionate (DMSP) catabolism of marine bacteria plays an important role in marine and global ecology. The genome of Ruegeria pomeroyi DSS-3, a model organism from the Roseobacter group, harbours no less than three genes for different DMSP lyases (DddW, DddP and DddQ) that catalyse the degradation of DMSP to dimethyl sulfide (DMS) and acrylate. Despite their apparent similar function these enzymes show no significant overall sequence identity.
View Article and Find Full Text PDF