Publications by authors named "Lukas KrauSS"

Article Synopsis
  • * Direct KRAS inhibitors are showing promise in clinical trials, but resistance to treatment is a concern, prompting the search for combination therapies.
  • * Unbiased drug screening identified effective combinations involving SOS1 inhibitors, PTPN11/SHP2 inhibitors, and multi-kinase inhibitors, validated using a unique KRAS-mutated patient-derived organoid model.
View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells adapt to various stresses, including those from treatments, through metabolic adaptability, focusing on the energy sensor AMP-activated protein kinase (AMPK).
  • In pancreatic ductal adenocarcinoma (PDAC), high levels of AMPK expression and activity were observed, leading to the identification of PF-3758309 as a potential AMPK inhibitor through drug repurposing.
  • PF-3758309 not only demonstrates pre-clinical effectiveness in PDAC models but also helps sensitizes cancer cells to ferroptosis inducers, paving the way for AMPK-targeted therapies in combination treatments for this type of cancer.
View Article and Find Full Text PDF
Article Synopsis
  • Dealing with different sequence formats and reference genomes is difficult in genetic research, leading to the need for tools that simplify this process.
  • The Sequence Conversion and Analysis Toolbox (SeqCAT) has been created to help researchers standardize and convert gene variant coordinates efficiently through a user-friendly web interface and API for automation.
  • With features like converting protein positions to DNA and checking gene fusions, SeqCAT offers 14 applications to cover a variety of genetic research needs and is accessible online.
View Article and Find Full Text PDF

Surgical resection, when combined with chemotherapy, has been shown to significantly improve the survival rate of patients with pancreatic ductal adenocarcinoma (PDAC). However, this treatment option is only feasible for a fraction of patients, as more than 50% of cases are diagnosed with metastasis. The multifaceted process of metastasis is still not fully understood, but recent data suggest that transcriptional and epigenetic plasticity play significant roles.

View Article and Find Full Text PDF

Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic Kras, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer.

View Article and Find Full Text PDF

Class I histone deacetylase (HDAC) enzymes are key regulators of cell proliferation and are frequently dysregulated in cancer cells. Here we describe the synthesis of a novel series of class-I selective HDAC inhibitors containing anilinobenzamide moieties as ZBG connected with a central (piperazin-1-yl)pyrazine moiety. Compounds were tested in vitro against class-I HDAC1, 2, and 3 isoforms.

View Article and Find Full Text PDF

Systemic therapies for pancreatic ductal adenocarcinoma (PDAC) remain unsatisfactory. Clinical prognosis is particularly poor for tumor subtypes with activating aberrations in the MYC pathway, creating an urgent need for novel therapeutic targets. To unbiasedly find MYC-associated epigenetic dependencies, we conducted a drug screen in pancreatic cancer cell lines.

View Article and Find Full Text PDF

Unlabelled: The mortality of patients with pancreatic ductal adenocarcinoma (PDAC) is strongly associated with metastasis, a multistep process that is incompletely understood in this disease. Although genetic drivers of PDAC metastasis have not been defined, transcriptional and epigenetic rewiring can contribute to the metastatic process. The epigenetic eraser histone deacetylase 2 (HDAC2) has been connected to less differentiated PDAC, but the function of HDAC2 in PDAC has not been comprehensively evaluated.

View Article and Find Full Text PDF

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541.

View Article and Find Full Text PDF