Nanowire (NW) optoelectronic and electrical devices offer unique advantages over bulk materials but are generally made by contacting entire NW arrays in parallel. In contrast, ultra-high-resolution displays and photodetectors require electrical connections to individual NWs inside an array. Here, we demonstrate a scheme for fabricating such single NW vertical devices by contacting individual NWs within a dense NW array.
View Article and Find Full Text PDFMetal-assisted chemical etching (MACE) is a cheap and scalable method that is commonly used to obtain silicon nano- or microwires but lacks spatial control. Herein, we present a synthesis method for producing vertical and highly periodic silicon microwires, using displacement Talbot lithography before wet etching with MACE. The functionalized periodic silicon microwires show 65% higher PEC performance and 2.
View Article and Find Full Text PDFWe present a micro-Raman study of InP/InGaP tandem junction photovoltaic nanowires. These nanowires render possible InGaP compositions that cannot be made in thin films due to strain. The micro-Raman spectra acquired along the nanowires reveal the existence of compositional changes in the InGaP alloy associated with the doping sequence.
View Article and Find Full Text PDFACS Appl Nano Mater
January 2024
We present vertically processed photovoltaic devices based on GaInP/InP tandem-junction III-V nanowires (NWs), contacting approximately 3 million NWs in parallel for each device. The GaInP and InP subcells as well as the connecting Esaki tunnel diode are all realized within the same NW. By processing GaInP/InP tandem-junction NW solar cells with varying compositions of the top junction GaInP material, we investigate the impact of the GaInP composition on the device performance.
View Article and Find Full Text PDFIII-V nanowire (NW) photovoltaic devices promise high efficiencies at reduced materials usage. However, research has so far focused on small devices, mostly ≤1 mm. In this study, the upscaling potential of axial junction InP NW photovoltaic devices is investigated.
View Article and Find Full Text PDFNanowire solar cells have the potential to reach the same efficiencies as the world-record III-V solar cells while using a fraction of the material. For solar energy harvesting, large-area nanowire solar cells have to be processed. In this work, we demonstrate the synthesis of epitaxial InP nanowire arrays on a 2 inch wafer.
View Article and Find Full Text PDFHere we report on the experimental results and advanced self-consistent real device simulations revealing a fundamental insight into the non-linear optical response of n-i-n InP nanowire array photoconductors to selective 980 nm excitation of 20 axially embedded InAsP quantum discs in each nanowire. The optical characteristics are interpreted in terms of a photogating mechanism that results from an electrostatic feedback from trapped charge on the electronic band structure of the nanowires, similar to the gate action in a field-effect transistor. From detailed analyses of the complex charge carrier dynamics in dark and under illumination was concluded that electrons are trapped in two acceptor states, located at 140 and 190 meV below the conduction band edge, at the interface between the nanowires and a radial insulating SiO cap layer.
View Article and Find Full Text PDFNanoscale X-ray detectors could allow higher resolution in imaging and diffraction experiments than established systems but are difficult to design due to the long absorption length of X-rays. Here, we demonstrate X-ray detection in a single nanowire in which the nanowire axis is parallel to the optical axis. In this geometry, X-ray absorption can occur along the nanowire length, while the spatial resolution is limited by the diameter.
View Article and Find Full Text PDFUsing light to interact with cells is a promising way to steer cell behavior with minimal perturbation. Besides optogenetics, photovoltaic nanostructures such as nanowires can be used to interact with cells using light as a switch. Photovoltaic nanowires have, for instance, been used to stimulate neurons.
View Article and Find Full Text PDFIn the current contribution we present a comprehensive study on the heteronuclear carbonyl complex HFeRu(CO) covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.
View Article and Find Full Text PDFA new method for the site-selective synthesis of nanowires has been developed to enable material growth with defined morphology and, at the same time, different composition on the same chip surface. The chemical vapor deposition approach for the growth of these nanowire-based resistive devices using micromembranes can be easily modified and represents a simple, adjustable fabrication process for the direct integration of nanowire meshes in multifunctional devices. This proof-of-concept study includes the deposition of SnO, WO, and Ge nanowires on the same chip.
View Article and Find Full Text PDF