We investigate the interaction between nonclassical light with a tunable multiphoton component and a highly nonlinear medium based on cold Rydberg atoms. The nonclassical field emitted by a DLCZ quantum memory is stored using Rydberg electromagnetically induced transparency, experiencing strong nonlinear response due to the dipole blockade. We show that the storage efficiency in the Rydberg ensemble decreases as a function of the multiphoton strength of the input field, as a result of the nonlinearity.
View Article and Find Full Text PDFFuture quantum repeater architectures, capable of efficiently distributing information encoded in quantum states of light over large distances, will benefit from multiplexed photonic quantum memories. In this work we demonstrate a temporally multiplexed quantum repeater node in a laser-cooled cloud of ^{87}Rb atoms. We employ the Duan-Lukin-Cirac-Zoller protocol where pairs of photons and single collective spin excitations (so-called spin waves) are created in several temporal modes using a train of write pulses.
View Article and Find Full Text PDF