Publications by authors named "Lukas Helfen"

We present a versatile optical setup for high-resolution neutron imaging with an adaptable field of view and magnification that can resolve individual neutron absorption events with an image intensifier and a CMOS camera. Its imaging performance is characterized by evaluating the resolution limits of the individual optical components and resulting design aspects are discussed. Neutron radiography measurements of a Siemens star pattern were performed in event mode acquisition comparing two common high-resolution neutron scintillators, crystalline Gadolinium Gallium Garnet (GGG) and powdered Gadolinium Oxysulfide (GOS).

View Article and Find Full Text PDF

Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales.

View Article and Find Full Text PDF

Hierarchical guidance is developed for three-dimensional (3D) nanoscale X-ray imaging, enabling identification, refinement, and tracking of regions of interest (ROIs) within specimens considerably exceeding the field of view. This opens up new possibilities for in situ investigations. Experimentally, the approach takes advantage of rapid multiscale measurements based on magnified projection microscopy featuring continuous zoom capabilities.

View Article and Find Full Text PDF

The electrochemical reduction of CO is a pivotal technology for the defossilization of the chemical industry. Although pilot-scale electrolyzers exist, water management and salt precipitation remain a major hurdle to long-term operation. In this work, we present high-resolution neutron imaging (6 μm) of a zero-gap CO electrolyzer to uncover water distribution and salt precipitation under application-relevant operating conditions (200 mA cm at a cell voltage of 2.

View Article and Find Full Text PDF
Article Synopsis
  • * High-resolution neutron imaging is used to analyze water content in the membrane-electrode-assembly by varying the ion-exchange capacity (IEC) of the polymer binder in the cathode catalyst layer.
  • * Findings indicate that a higher IEC improves water retention in the cathode, leading to better electrochemical efficiency and performance stability compared to a mid IEC configuration.
View Article and Find Full Text PDF

Neutron tomography has emerged as a promising imaging technique for specific applications in bone research. Neutrons have a strong interaction with hydrogen, which is abundant in biological tissues, and they can penetrate through dense materials such as metallic implants. However, in addition to long imaging times, two factors have led to challenges in running mechanical characterization experiments on bone tissue using neutron tomography: 1) the high water content in specimens reduces the visibility of internal trabecular structures; 2) the mechanical properties of bone are dependent on the hydration state of the tissue, with drying being reported to cause increased stiffness and brittleness.

View Article and Find Full Text PDF

Nakhlite meteorites are igneous rocks from Mars that were aqueously altered ~630 million years ago. Hydrothermal systems on Earth are known to provide microhabitats; knowledge of the extent and duration of these systems is crucial to establish whether they could sustain life elsewhere in the Solar System. Here, we explore the three-dimensional distribution of hydrous phases within the Miller Range 03346 nakhlite meteorite using nondestructive neutron and x-ray tomography to determine whether alteration is interconnected and pervasive.

View Article and Find Full Text PDF

Tofu is a toolkit for processing large amounts of images and for tomographic reconstruction. Complex image processing tasks are organized as workflows of individual processing steps. The toolkit is able to reconstruct parallel and cone beam as well as tomographic and laminographic geometries.

View Article and Find Full Text PDF

A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline GdGaO : Eu scintillator, which provides an isotropic sub-4 µm true resolution. The exposure times are only of a few minutes per image.

View Article and Find Full Text PDF

Advanced anode material designs utilizing dual phase alloy systems like Si/FeSi nano-composites show great potential to decrease the capacity degrading and improve the cycling capability for Lithium (Li)-ion batteries. Here, we present a multi-scale characterization approach to understand the (de-)lithiation and irreversible volumetric changes of the amorphous silicon (a-Si)/crystalline iron-silicide (c-FeSi) nanoscale phase and its evolution due to cycling, as well as their impact on the proximate pore network. Scattering and 2D/3D imaging techniques are applied to probe the anode structural ageing from nm to μm length scales, after up to 300 charge-discharge cycles, and combined with modeling using the collected image data as an input.

View Article and Find Full Text PDF

Various tissue types, including fibrous connective tissue, bone marrow, cartilage, woven and lamellar bone, coexist in healing bone. Similar to most bone tissue type, healing bone contains a lacuno-canalicular network (LCN) housing osteocytes. These cells are known to orchestrate bone remodeling in healthy bone by sensing mechanical strains and translating them into biochemical signals.

View Article and Find Full Text PDF
Article Synopsis
  • Human cortical bone fracture toughness varies by anatomical location during quasi-static loading, but is similar across locations during fall-like loading.
  • In a study involving femoral and radial bones from older female donors, both loading conditions were tested to analyze micro-cracks using advanced imaging techniques.
  • Results indicated that more micro-cracks formed under quasi-static conditions compared to fall-like conditions, highlighting that toughening mechanisms are influenced by both the anatomical site and type of mechanical load applied.
View Article and Find Full Text PDF
Article Synopsis
  • Human bone adapts to its mechanical environment, leading to differences in architecture and microstructure between weight-bearing and non-weight-bearing bones.
  • This study used advanced imaging techniques to examine the three-dimensional structure of porosities in human cortical bone across different anatomical locations, focusing on femoral and radial bones.
  • Findings revealed significant microstructural differences, with the radius showing lower volume and smaller osteonal canals compared to the femur, suggesting that properties of femoral cortical bone cannot be universally applied to other bones.
View Article and Find Full Text PDF

In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*.

View Article and Find Full Text PDF

Real-time processing of X-ray image data acquired at synchrotron radiation facilities allows for smart high-speed experiments. This includes workflows covering parameterized and image-based feedback-driven control up to the final storage of raw and processed data. Nevertheless, there is presently no system that supports an efficient construction of such experiment workflows in a scalable way.

View Article and Find Full Text PDF

Altered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (μ-XRF) imaging.

View Article and Find Full Text PDF

Synchrotron radiation computed laminography (CL) was developed to complement the conventional computed tomography as a non-destructive 3D imaging method for the inspection of flat thin objects. Recent progress in hardware at synchrotron sources allows one to record internal evolution of specimens at the micrometer scale and sub-second range but also requires increased reconstruction speed to follow structural changes online. A 3D image of the sample interior is usually reconstructed by the well-established filtered backprojection (FBP) approach.

View Article and Find Full Text PDF

The interactions of a beam of hard and spatio-temporally coherent X-rays with a soft-matter sample primarily induce a transverse distribution of exit phase variations δϕ (retardations or advancements in pieces of the wave front exiting the object compared to the incoming wave front) whose free-space propagation over a distance z gives rise to intensity contrast gz. For single-distance image detection and |δϕ| ≪ 1 all-order-in-z phase-intensity contrast transfer is linear in δϕ. Here we show that ideal coherence implies a decay of the (shot-)noise-to-signal ratio in gz and of the associated phase noise as z(-1/2) and z(-1), respectively.

View Article and Find Full Text PDF

We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography, and was evaluated using measurements of gas exchange and leaf optical properties.

View Article and Find Full Text PDF

Synchrotron radiation computed laminography (SR-CL) is presented as an imaging method for analyzing the three-dimensional (3D) anatomy of leaves. The SR-CL method was used to provide 3D images of 1-mm² samples of intact leaves at a pixel resolution of 750 nm. The method allowed visualization and quantitative analysis of palisade and spongy mesophyll cells, and showed local venation patterns, aspects of xylem vascular structure and stomata.

View Article and Find Full Text PDF

We report three-dimensional (3D) direct imaging of complex surface-liquid interfaces by hard X-ray phase contrast tomography as a non-destructive approach for the morphological characterization of surfaces at the micro- and nanoscale in contact with water. Specifically, we apply this method to study the solid-air-water interface in hydrophobic macroporous polymethacrylate surfaces, and the solid-oil-water interface in slippery liquid-infused porous surfaces (SLIPS). Varying the isotropic spatial resolution allows the 3D quantitative characterization of individual polymer globules, globular clusters (porosity) as well as the infused lubricant layer on SLIPS.

View Article and Find Full Text PDF

Pushing synchrotron x-ray radiography to increasingly higher image-acquisition rates (currently up to 100,000 fps) while maintaining spatial resolutions in the micrometer range implies drastically reduced fields of view. As a consequence, either imaging a small subregion of the sample with high spatial resolution or only the complete specimen with moderate resolution is applicable. We introduce a concept to overcome this limitation by making use of a semi-transparent x-ray detector positioned close to the investigated sample.

View Article and Find Full Text PDF

Computed laminography (CL) was developed to use X-rays from synchrotron sources for high-resolution imaging of the internal structure of a flat specimen from a series of 2-D projection images. The projections are acquired by irradiation of the sample under different rotation angles where the object rotation axis is inclined with respect to the beam direction. This yields for laterally extended objects a more uniform average transmitted intensity during sample rotation compared with computed tomography (CT).

View Article and Find Full Text PDF

The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected.

View Article and Find Full Text PDF

Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts.

View Article and Find Full Text PDF