Publications by authors named "Lukas Hartung"

Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics. However, scalability to larger systems with many qubits is challenging. One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits that are reversibly interfaced to communication qubits.

View Article and Find Full Text PDF

Nondestructive quantum measurements are central for quantum physics applications ranging from quantum sensing to quantum computing and quantum communication. Employing the toolbox of cavity quantum electrodynamics, we here concatenate two identical nondestructive photon detectors to repeatedly detect and track a single photon propagating through a 60 m long optical fiber. By demonstrating that the combined signal-to-noise ratio of the two detectors surpasses each single one by about 2 orders of magnitude, we experimentally verify a key practical benefit of cascaded nondemolition detectors compared to conventional absorbing devices.

View Article and Find Full Text PDF

Quantum teleportation enables the deterministic exchange of qubits via lossy channels. While it is commonly believed that unconditional teleportation requires a preshared entangled qubit pair, here we demonstrate a protocol that is in principle unconditional and requires only a single photon as an ex-ante prepared resource. The photon successively interacts, first, with the receiver and then with the sender qubit memory.

View Article and Find Full Text PDF

The big challenge in quantum computing is to realize scalable multi-qubit systems with cross-talk-free addressability and efficient coupling of arbitrarily selected qubits. Quantum networks promise a solution by integrating smaller qubit modules to a larger computing cluster. Such a distributed architecture, however, requires the capability to execute quantum-logic gates between distant qubits.

View Article and Find Full Text PDF