Publications by authors named "Lukas Eugen Marsoner Steinkasserer"

To assist the design of efficient molecular junctions, a precise understanding of the charge transport mechanisms through nanoscaled devices is of prime importance. In the present contribution, we present time- and space-resolved electron transport simulations through a nanojunction under time-dependent potential biases. We use the driven Liouville-von Neumann approach to simulate the time evolution of the one-electron density matrix under nonequilibrium conditions, which allows us to capture the ultrafast scattering dynamics, the electronic relaxation process, and the quasi-stationary current limit from the same simulation.

View Article and Find Full Text PDF

Optical absorption spectra for nanostructures and solids can be obtained from the macroscopic dielectric function within the random phase approximation. While experimental spectra can be reproduced with good accuracy, important properties, such as the charge-transfer character associated with a particular transition, are not retrievable. This contribution presents a computationally inexpensive method for the analysis of optical and excitonic properties for extended systems based on solely their electronic ground-state structure.

View Article and Find Full Text PDF

Graphene pseudohalides are natural candidates for use in molecular sensing due to their greater chemical activity as compared to both graphene halides and pristine graphene. Though their study is still in its infancy, being hindered until recently by the unavailability of both selective and efficient procedures for their synthesis, they promise to considerably widen the application potential of chemically modified graphenes. Herein, we employ van der Waals density functional theory to study the structural and electronic properties of two selected graphene pseudohalides, namely, cyanographone and isocyanographone and investigate the potential use of the latter as a chemical sensor via electron transport calculations.

View Article and Find Full Text PDF

While halogenation of graphene presents a fascinating avenue to the construction of a chemically and physically diverse class of systems, their application in photovoltaics has been hindered by often prohibitively large optical gaps. Herein we study the effects of partial bromination and chlorination on the structure and optoelectronic properties of both graphane and fluorographene. We find brominated and chlorinated fluorographene derivatives to be as stable as graphane with a detailed investigation of the systems band structure revealing significant 1D localization of the charge carriers as well as strongly electron-hole asymmetric effective masses.

View Article and Find Full Text PDF

We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that the parabolic dispersion of Au(111) and Ag(111) surface states remains unchanged with the band minimum shifted to higher energies for the regions of the metal surface covered by graphene, reflecting a rather weak interaction between graphene and the metal surface.

View Article and Find Full Text PDF

Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems.

View Article and Find Full Text PDF