Publications by authors named "Lukas Endler"

BackgroundThe COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.AimWe discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.

View Article and Find Full Text PDF

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites.

View Article and Find Full Text PDF

Motivation: Environmental monitoring of pathogens provides an accurate and timely source of information for public health authorities and policymakers. In the last 2 years, wastewater sequencing proved to be an effective way of detection and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants circulating in population. Wastewater sequencing produces substantial amounts of geographical and genomic data.

View Article and Find Full Text PDF

SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to an international public health emergency in 3 months after its emergence in Wuhan, China. Typically for an RNA virus, random mutations occur constantly leading to new lineages, incidental with a higher transmissibility. The highly infective alpha lineage, firstly discovered in the UK, led to elevated mortality and morbidity rates as a consequence of Covid-19, worldwide.

View Article and Find Full Text PDF

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2.

View Article and Find Full Text PDF

Further analysis of SARS-CoV-2 genome sequencing data identifies several highly recurrent genetic variants with low allele frequencies, which, if filtered out, provide estimates consistent with tighter transmission bottlenecks.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes (CTLs) represent key immune effectors of the host response against chronic viruses, due to their cytotoxic response to virus-infected cells. In response to this selection pressure, viruses may accumulate escape mutations that evade CTL-mediated control. To study the emergence of CTL escape mutations, we employed the murine chronic infection model of lymphocytic choriomeningitis virus (LCMV).

View Article and Find Full Text PDF

Objectives: External quality assessment (EQA) schemes provide information on individual and general analytical performance of participating laboratories and test systems. The aim of this study was to investigate the use and performance of SARS-CoV-2 virus genome detection systems in Austrian laboratories and their preparedness to face challenges associated with the pandemic.

Methods: Seven samples were selected to evaluate performance and estimate variability of reported results.

View Article and Find Full Text PDF

is one of the most important bacterial agents of respiratory diseases in poultry. For correct identification and characterization of this fastidious bacterium, reliable diagnostic tools are essential. Still, phenotypic tests are used to identify and serotyping is the most common method for characterization, despite known drawbacks and disadvantages such as divergent results, cross-reactivity between strains, or the non-typeability of strains.

View Article and Find Full Text PDF

CD8 T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control. Here, we identified nonsynonymous mutations in MHC-I-restricted CD8 T cell epitopes after deep sequencing of 747 SARS-CoV-2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding in a cell-free in vitro assay.

View Article and Find Full Text PDF

Superspreading events shaped the coronavirus disease 2019 (COVID-19) pandemic, and their rapid identification and containment are essential for disease control. Here, we provide a national-scale analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading during the first wave of infections in Austria, a country that played a major role in initial virus transmissions in Europe. Capitalizing on Austria's well-developed epidemiological surveillance system, we identified major SARS-CoV-2 clusters during the first wave of infections and performed deep whole-genome sequencing of more than 500 virus samples.

View Article and Find Full Text PDF

After analyzing 27 new genomes from fowl adenovirus (FAdV) field isolates and so-far unsequenced prototypes, we report the first evidence for recombination in FAdVs. Recombination was confined to species FAdV-D and FAdV-E, accommodating the largest number of, and the intraspecies-wise most differentiated, types. The majority of detected events occurred in FAdV-E, involving segments with parental origin of all constitutive types.

View Article and Find Full Text PDF

Traits with a common genetic basis frequently display correlated phenotypic responses to selection or environmental conditions. In Drosophila melanogaster, pigmentation of the abdomen and a trident-shaped region on the thorax are genetically correlated. Here, we used a pooled replicated genomewide association approach (Pool-GWAS) to identify the genetic basis of variation in thoracic trident pigmentation in two Drosophila melanogaster populations.

View Article and Find Full Text PDF

The protozoan flagellate Histomonas meleagridis is the causative agent of histomonosis in poultry. In turkeys, high mortality might be noticed whereas in chickens the disease is less severe despite production losses. Discovered over a century ago, molecular data on this parasite are scarce and genetic studies are in its infancy.

View Article and Find Full Text PDF

The degree of concordance between populations in the genetic architecture of a given trait is an important issue in medical and evolutionary genetics. Here, we address this problem, using a replicated pooled genome-wide association study approach (Pool-GWAS) to compare the genetic basis of variation in abdominal pigmentation in female European and South African Drosophila melanogaster. We find that, in both the European and the South African flies, variants near the tan and bric-à-brac 1 (bab1) genes are most strongly associated with pigmentation.

View Article and Find Full Text PDF

Chemical kinetics is the study of the rate of reactions transforming some chemical entities into other chemical entities. Over the twentieth century it has become one of the cornerstones of biochemistry. When in the second half of the century basic knowledge of cellular processes became sufficient to understand quantitatively metabolic networks, chemical kinetics associated with systems theory led to the development of what would become an important branch of systems biology.

View Article and Find Full Text PDF

Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ∼2× more reactions and ∼1.

View Article and Find Full Text PDF

Background: The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity.

View Article and Find Full Text PDF

Background: Quantitative models of biochemical and cellular systems are used to answer a variety of questions in the biological sciences. The number of published quantitative models is growing steadily thanks to increasing interest in the use of models as well as the development of improved software systems and the availability of better, cheaper computer hardware. To maximise the benefits of this growing body of models, the field needs centralised model repositories that will encourage, facilitate and promote model dissemination and reuse.

View Article and Find Full Text PDF

A key component of any synthetic biology effort is the use of quantitative models. These models and their corresponding simulations allow optimization of a system design, as well as guiding their subsequent analysis. Once a domain mostly reserved for experts, dynamical modelling of gene regulatory and reaction networks has been an area of growth over the last decade.

View Article and Find Full Text PDF

Summary: The XML-based Systems Biology Markup Language (SBML) has emerged as a standard for storage, communication and interchange of models in systems biology. As a machine-readable format XML is difficult for humans to read and understand. Many tools are available that visualize the reaction pathways stored in SBML files, but many components, e.

View Article and Find Full Text PDF

A self-consistent minimal cell model with a physically motivated schema for molecular interaction is introduced and described. The genetic and metabolic reaction network of the cell is modelled by multidimensional nonlinear ordinary differential equations, which are derived from biochemical kinetics. The strategy behind this modelling approach is to keep the model sufficiently simple in order to be able to perform studies on evolutionary optimization in populations of cells.

View Article and Find Full Text PDF

The repressilator is a regulatory cycle of n genes where each gene represses its successor in the cycle: [see text]. The system is modelled by ODEs for an arbitrary number of identical genes and arbitrarily strong repressor binding. A detailed mathematical analysis of the dynamical behavior is provided for two model systems: (i) a repressilator with leaky transcription and single-step cooperative repressor binding, and (ii) a repressilator with auto-activation and cooperative regulator binding.

View Article and Find Full Text PDF

Background: Plasminogen activator inhibitor-1 (PAI-1) plays an important role in the regulation of fibrinolysis and extracellular matrix turnover. PAI-1 4G/5G insertion/deletion polymorphism in the PAI-1 promoter region has been shown to modulate PAI-1 plasma levels. We investigated the relationship between this polymorphism and the prevalence of diabetic nephropathy and retinopathy in patients with type 2 diabetes in the Austrian population.

View Article and Find Full Text PDF