Direct epitaxial growth of III-Vs on silicon for optical emitters and detectors is an elusive goal. Nanowires enable the local integration of high-quality III-V material, but advanced devices are hampered by their high-aspect ratio vertical geometry. Here, we demonstrate the in-plane monolithic integration of an InGaAs nanostructure p-i-n photodetector on Si.
View Article and Find Full Text PDFIII-V semiconductors are being considered as promising candidates to replace silicon channel for low-power logic and RF applications in advanced technology nodes. InGaAs is particularly suitable as the channel material in n-type metal-oxide-semiconductor field-effect transistors (MOSFETs), due to its high electron mobility. In the present work, we report on InGaAs FinFETs monolithically integrated on silicon substrates.
View Article and Find Full Text PDFThe electro-optical Pockels effect is an essential nonlinear effect used in many applications. The ultrafast modulation of the refractive index is, for example, crucial to optical modulators in photonic circuits. Silicon has emerged as a platform for integrating such compact circuits, but a strong Pockels effect is not available on silicon platforms.
View Article and Find Full Text PDFWe investigated during the first lithiation/delithiation process the electrochemical reaction mechanisms at the surface of 30 nm n-doped amorphous silicon (a-Si) thin film used as a negative model electrode for Li-ion batteries. Usage of thin film allowed us to accurately discern the different reaction mechanisms occurring at the surface by avoiding interference from carbon and binder components. The potential dependency of the evolution of the solid electrolyte interphase (SEI) and the reactions on the a-Si and on the copper current collector were elucidated by coupling galvanostatic cycling with postmortem X-ray photoemission spectroscopy and scanning electron microscopy analyses.
View Article and Find Full Text PDF