It has been recently demonstrated that laser micromachining of magnetoactive elastomers is a very convenient method for fabricating dynamic surface microstructures with magnetically tunable properties, such as wettability and surface reflectivity. In this study, we investigate the impact of the micromachining process on the fabricated material's structural properties and its chemical composition. By employing scanning electron microscopy, we investigate changes in size distribution and spatial arrangement of carbonyl iron microparticles dispersed in the polydimethylsiloxane (PDMS) matrix as a function of laser irradiation.
View Article and Find Full Text PDFStimuli responsive materials are key ingredients for any application that requires dynamically tunable or on-demand responses. In this work we report experimental and theoretical investigation of magnetic-field driven modifications of soft-magnetic elastomers whose surface was processed by laser ablation into lamellar microstructures that can be manipulated by a uniform magnetic field. We present a minimal hybrid model that elucidates the associated deflection process of the lamellae and explains the lamellar structure frustration in terms of dipolar magnetic forces arising from the neighbouring lamellae.
View Article and Find Full Text PDFPolymers (Basel)
September 2022
We demonstrate the control of wettability of non-structured and microstructured magnetoactive elastomers (MAEs) by magnetic field. The synthesized composite materials have a concentration of carbonyl iron particles of 75 wt.% (≈27 vol.
View Article and Find Full Text PDFIn this paper, we investigate the influence of the following parameters: pulse duration, pulse repetition rate, line-to-line and pulse-to-pulse overlaps, and scanning strategy on the ablation of AISI 316L steel and CuZn37 brass with a nanosecond, 1064-nm, Yb fiber laser. The results show that the material removal rate () increases monotonically with pulse duration up to the characteristic repetition rate () where pulse energy and average power are maximal. The maximum is reached at a repetition rate that is equal or slightly higher as .
View Article and Find Full Text PDFControlling the surface wettability represents an important challenge in the field of surface functionalization. Here, the wettability of a stainless-steel surface is modified by 30-ns pulses of a Nd:YAG marking laser (λ = 1064 nm) with peak fluences within the range 3.3⁻25.
View Article and Find Full Text PDF