Major histocompatibility complex (MHC) genes are widely recognised as valuable markers for wildlife genetic studies given their extreme polymorphism and functional importance in fitness-related traits. Newly developed genotyping methods, which rely on the use of next-generation sequencing (NGS), are gradually replacing traditional cloning and Sanger sequencing methods in MHC genotyping studies. Allele calling in NGS methods remains challenging due to extreme polymorphism and locus multiplication in the MHC coupled with allele amplification bias and the generation of artificial sequences.
View Article and Find Full Text PDFDisease control and containment in free-ranging populations is one of the greatest challenges in wildlife management. Despite the importance of major histocompatibility complex (MHC) genes for immune response, an assessment of the diversity and occurrence of these genes is still rare in European roe deer, the most abundant and widespread large mammal in Europe. Therefore, we examined immunogenetic variation in roe deer in Slovenia to identify species adaptation by comparing the genetic diversity of the MHC genes with the data on neutral microsatellites.
View Article and Find Full Text PDFHabitat fragmentation and loss have contributed significantly to the demographic decline of European wildcat populations and hybridization with domestic cats poses a threat to the loss of genetic purity of the species. In this study we used microsatellite markers to analyse genetic variation and structure of the wildcat populations from the area between the Dinaric Alps and the Scardo-Pindic mountains in Slovenia, Croatia, Serbia and North Macedonia. We also investigated hybridisation between populations of wildcats and domestic cats in the area.
View Article and Find Full Text PDF