In this study, waste pomelo peels (PP) mixed with iron salts was treated successively with hydrothermal and pyrolyzing carbonization processes to obtain Fe(0) containing biochar composites (Fe@PP-Hy-Py) and the catalytic degradation of p-nitrophenol (PNP) using these Fe@PP-Hy-Py composites was studied. The results showed that the hydrothermal pre-treatment of the mixture of iron salts and pomelo peels was favorable for the incorporation of iron precursor within biomass network, which enabled copolymerization during the following pyrolysis. Through the pyrolysis process, the iron precursor was reduced in situ to amorphous Fe(0) dopped into the carbonaceous matrix, which conversely decreased the defect and disorder degree of pseudo-graphitic carbons and catalyzed the formation of environmental persistent free radicals (EPFRs).
View Article and Find Full Text PDFIn this study, modified cellulose aerogels (CAs) were obtained via wet ball-milling and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation and were further applied to prepare cellulose-derived carbon aerogels (CCAs) by pyrolyzing. The results showed that the successive treatments by ball-milling and oxidation completely opened the CA fibers and converted them into plane or wrinkle structures. CCAs contained porous and graphite-like structures and its specific surface area reached up to 2825 m/g.
View Article and Find Full Text PDFMolecular fractionation of dissolved organic matter (DOM) induced by the sorption on soil minerals is a common geochemical process in soil, which has been well documented on natural DOM. Biochar is an emerging soil amendment and can continuously release DOM into the soil. However, reports regarding the interactions of soil minerals and biochar-derived DOM are limited.
View Article and Find Full Text PDFOne interest of using biochar as soil amendment is to reduce pesticide adverse effects. In this paper, the sorption and degradation of thiacloprid (THI) in a black soil amended by various biochars were systematically investigated, and the mechanisms therein were explored by analyzing the changes in soil physicochemical properties, degrading enzymes and genes and microorganism community. Biochar amendment increased THI sorption in soil, which was associated with an increase in organic carbon and surface area and a decrease in H/C.
View Article and Find Full Text PDFTo elucidate the sorption affinity of biochars for neonicotinoid pesticides and the influence of biochar structure on sorption mechanisms therein, 24 biochar samples were obtained by pyrolyzing maize straw and pig manure at pyrolyzing temperatures (PTs) of 200-700 °C and by further deashing them using acids, and the sorption of three typical neonicotinoids, imidacloprid, clothianidin and thiacloprid on untreated and acid-deashed biochars were evaluated. All the biochar samples could efficiently adsorb the three neonicotinoids and multiple mechanisms were involved in sorption. With the increasing PTs, hydrophobic partition sorption increased, but had a declined contribution to the total sorption as revealed by a dual-mode model.
View Article and Find Full Text PDFIn this study, the sorption, desorption and degradation of three neonicotinoids, imidacloprid (IMI), clothianidin (CLO) and thiacloprid (THI), and their effects on microorganisms in four different agricultural soils were systematically evaluated. The sorption of neonicotinoids on the soils was generally low with distribution coefficients (K) up to 16.2L/kg at C of 0.
View Article and Find Full Text PDFConductive polypyrrole-polyaniline/TiO2 nanocomposites (PPy-PANI/TiO2) were prepared by in situ oxidative copolymerization of pyrrole and aniline monomers in the presence of TiO2. For comparison studies, polypyrrole/TiO2 (PPy/TiO2) and polyaniline/TiO2 (PANI/TiO2) were also prepared. The samples were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, zeta potential analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis and photocurrent tests.
View Article and Find Full Text PDFInorganic-framework molecularly imprinted TiO2/WO3 nanocomposites with molecular recognitive photocatalytic activity were first prepared successfully by a facile one-step sol-gel method using 2-nitrophenol and 4-nitrophenol as template molecules, and tetrabutyl orthotitanate as titanium source as well as the precursor of functional monomer which could complex with template molecules. The template molecules could be completely removed by means of high-temperature calcination, avoiding the traditional extraction procedures that are time- as well as solvent-consuming. Compared to nonimprinted TiO2/WO3, the molecularly imprinted TiO2/WO3 shows a much higher adsorption capacity and selectivity toward the template molecules.
View Article and Find Full Text PDF