Publications by authors named "Lujan-Montelongo J"

The development of an efficient method for the synthesis of polysubstituted isoindolinones from 1,3-dicarbonyl Ugi-4CR adducts, employing an aromatic radical cyclization process promoted by tetrabutylammonium persulfate and 2,2,6,6-tetramethyl-1-piperidine 1-oxyl (TEMPO), is described. The protocol allowed the construction of a library of isoindolinones bearing a congested carbon in good to excellent yields under mild conditions and in short reaction times.

View Article and Find Full Text PDF

Asmic addresses the long-standing challenge of alkylating isocyanides, providing access to isocyanides with diverse substitution patterns. The o-anisylsulfanyl group serves a critical dual role by facilitating deprotonation-alkylation and providing a latent nucleophilic site through an unusual arylsulfanyl-lithium exchange.

View Article and Find Full Text PDF

A facile and highly efficient method for the bromomethylation of thiols, using paraformaldehyde and HBr/AcOH, has been developed, which advantageously minimizes the generation of highly toxic byproducts. The preparation of 22 structurally diverse α-bromomethyl sulfides illustrates the chemo-tolerant applicability while bromo-lithium exchange and functionalization sequences, free radical reductions, and additions of the title compounds demonstrate their synthetic utility.

View Article and Find Full Text PDF

Diastereoselective alkylation of prochiral oxonitrile dianions with secondary alkyl halides efficiently installs two contiguous stereogenic centers. The confluence of nucleophilic trajectory and the electrophile chirality causes distinct steric differences that allow efficient discrimination for one of the six possible conformers. Numerous oxonitrile-derived dianions efficiently displace secondary alkyl halides propagating the electrophile chirality to efficiently install two contiguous tertiary centers.

View Article and Find Full Text PDF

Isocyanides are exceptional building blocks, the wide deployment of which in multicomponent and metal-insertion reactions belies their limited availability. The first conjugate addition/alkylation to alkenyl isocyanides is described, which addresses this deficiency. An array of organolithiums, magnesiates, enolates, and metalated nitriles add conjugately to β- and β,β-disubstituted arylsulfonyl alkenyl isocyanides to rapidly assemble diverse isocyanide scaffolds.

View Article and Find Full Text PDF

Copper iodide catalyzes the conjugate addition of organometallic and heteroatom nucleophiles to isocyano enones to afford oxazoles. A range of enolates, metalated nitriles, amines, and thiols undergo catalyzed conjugate addition to cyclic and acyclic oxoalkene isocyanides. Mechanistic studies suggest that copper complexation facilitates the nucleophilic attack on the isocyano enone to generate an enolate that cyclizes onto the isocyanide leading to a variety of substituted acyclic or ring-fused oxazoles.

View Article and Find Full Text PDF

Alkyl sulfinates function as formal nucleophiles in Mannich-type reactions to give sulfonyl formamides, which are readily dehydrated to the corresponding sulfonylmethyl isonitriles. The efficient, two-step synthesis provides a general route to sulfonylmethyl isonitriles from readily available methyl sulfinates or thiols. Mechanistic analysis reveals that the unusual nucleophlicity of the alkyl sulfinates arises from the in situ release of sulfinic acids.

View Article and Find Full Text PDF