Publications by authors named "Luiza Rusu"

Acute respiratory distress syndrome (ARDS) is an inflammatory lung disease with a high morbidity and mortality rate, for which no pharmacologic treatment is currently available. Our previous studies discovered that a pivotal step in the disease process is the activation of the nuclear factor of activated T cells (NFAT) c3 in lung macrophages, suggesting that inhibitors against the upstream protein phosphatase calcineurin should be effective for prevention/treatment of ARDS. Herein, we report the development of a highly potent, cell-permeable, and metabolically stable peptidyl inhibitor, CNI103, which selectively blocks the interaction between calcineurin and NFATc3, through computational and medicinal chemistry.

View Article and Find Full Text PDF

Specific therapies targeting cellular and molecular events of sepsis induced Acute Lung Injury (ALI) pathogenesis are lacking. We have reported a pivotal role for Nuclear Factors of Activated T cells (NFATc3) in regulating macrophage phenotype during sepsis induced ALI and subsequent studies demonstrate that NFATc3 transcriptionally regulates macrophage CCR2 and TNFα gene expression. Mouse pulmonary microvascular endothelial cell monolayer maintained a tighter barrier function when co-cultured with LPS stimulated NFATc3 deficient macrophages whereas wild type macrophages caused leaky monolayer barrier.

View Article and Find Full Text PDF

Inflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated.

View Article and Find Full Text PDF

von Willebrand factor (vWF) secretion by endothelial cells (ECs) is essential for hemostasis and thrombosis; however, the molecular mechanisms are poorly understood. Interestingly, we observed increased bleeding in EC-Gα13(-/-);Gα12(-/-) mice that could be normalized by infusion of human vWF. Blood from Gα12(-/-) mice exhibited significantly reduced vWF levels but normal vWF multimers and impaired laser-induced thrombus formation, indicating that Gα12 plays a prominent role in EC vWF secretion required for hemostasis and thrombosis.

View Article and Find Full Text PDF