Sickle cell anemia (SCA) is a monogenic disease of high mortality, affecting millions of people worldwide. There is no broad, effective, and safe definitive treatment for SCA, so the palliative treatments are the most used. The establishment of an in vitro model allows better understanding of how the disease occurs, besides allowing the development of more effective tests and treatments.
View Article and Find Full Text PDFTen years have passed since the first publication announcing the generation of induced pluripotent stem cells (iPSCs). Issues related to ethics, immune rejection, and cell availability seemed to be solved following this breakthrough. The development of iPSC technology allows advances in in vitro cell differentiation for cell therapy purpose and other clinical applications.
View Article and Find Full Text PDFReprogramming of somatic cells to pluripotency promises to boost cellular therapy. Most instances of direct reprogramming have been achieved by forced expression of defined exogenous factors using multiple viral vectors. The most used 4 transcription factors, octamer-binding transcription factor 4 (OCT4), (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and v-myc myelocytomatosis viral oncogene homolog (C-MYC), can induce pluripotency in mouse and human fibroblasts.
View Article and Find Full Text PDF