Histidine-containing dipeptides (HCDs) are abundantly expressed in striated muscles. Although important properties have been ascribed to HCDs, including H buffering, regulation of Ca transients and protection against oxidative stress, it remains unknown whether they play relevant functions in vivo. To investigate the in vivo roles of HCDs, we developed the first carnosine synthase knockout (CARNS1) rat strain to investigate the impact of an absence of HCDs on skeletal and cardiac muscle function.
View Article and Find Full Text PDFBackground: Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex.
View Article and Find Full Text PDFBackground: We previously reported that exercise training (ET) facilitates the clearance of damaged proteins in heart failure. Here, we characterized the impact of ET on cardiac protein quality control during compensated ventricular hypertrophy in spontaneously hypertensive rats (SHR).
Methods And Results: SHR were randomly assigned into sedentary and swimming-trained groups.
Skeletal muscle protein turnover is modulated by intracellular signaling pathways involved in protein synthesis, degradation, and inflammation. The proinflammatory status of muscle cells, observed in pathological conditions such as cancer, aging, and sepsis, can directly modulate protein translation initiation and muscle proteolysis, contributing to negative protein turnover. In this context, branched-chain amino acids (BCAAs), especially leucine, have been described as a strong nutritional stimulus able to enhance protein translation initiation and attenuate proteolysis.
View Article and Find Full Text PDFTubule-interstitial nephritis (TIN) results in decreased renal function and interstitial inflammation, which ultimately leads to fibrosis. Excessive adenine intake can cause TIN because xanthine dehydrogenase (XDH) can convert this purine into an insoluble compound, which precipitates in the tubuli. Innate immune sensors, such as Toll-like receptors (TLR) and inflammasome complex, play a crucial role in the initiation of inflammation.
View Article and Find Full Text PDFJ Smooth Muscle Res
May 2009
The present study investigated the effect of one bout of moderate-intensity exercise on the adrenergic receptor-dependent and -independent vasoconstrictor response in rat aortas, and the role of nitric oxide (NO) bioavailability on these vasomotor responses. One group of rats was submitted to a 60 min of exercise at approximately 60% of maximal exercise capacity on a treadmill (exercise group) and the other one was placed in the treadmill without running (control group). Immediately after this period, both groups were euthanized and the thoracic aorta was removed to evaluate the vasoconstrictor response to norepinephrine and potassium chloride, and to evaluate the vascular nitrite and nitrate concentration.
View Article and Find Full Text PDFMyocardial infarction (MI) has been associated with increases in reactive oxygen species (ROS). Exercise training (ET) has been shown to exert positive modulations on vascular function and the purpose of the present study was to investigate the effect of moderate ET on the aortic superoxide production index, NAD(P)H oxidase activity, superoxide dismutase activity and vasomotor response in MI rats. Aerobic ET was performed during 11 weeks.
View Article and Find Full Text PDF