microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.
View Article and Find Full Text PDFTumors are intrinsically heterogeneous and it is well established that this directs their evolution, hinders their classification and frustrates therapy. Consequently, spatially resolved omics-level analyses are gaining traction. Despite considerable therapeutic interest, tumor metabolism has been lagging behind this development and there is a paucity of data regarding its spatial organization.
View Article and Find Full Text PDFMicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.
View Article and Find Full Text PDFMethionine adenosyltransferase (MAT) catalyzes the adenosine 5'-triphosphate (ATP) and l-methionine (l-Met) dependent formation of -adenosyl-l-methionine (SAM), the principal methyl donor of most biological transmethylation reactions. We carried out in-depth kinetic studies to further understand its mechanism and interaction with a potential regulator, Mat2B. The initial velocity pattern and results of product inhibition by SAM, phosphate, and pyrophosphate, and dead-end inhibition by the l-Met analog cycloleucine (l-cLeu) suggest that Mat2A follows a strictly ordered kinetic mechanism where ATP binds before l-Met and with SAM released prior to random release of phosphate and pyrophosphate.
View Article and Find Full Text PDFCharacterizing the mycobacterial transporters involved in the uptake and/or catabolism of host-derived nutrients required by mycobacteria may identify novel drug targets against tuberculosis. Here, we identify and characterize a member of the amino acid-polyamine-organocation superfamily, a potential γ-aminobutyric acid (GABA) transport protein, GabP, from The protein was expressed to a level allowing its purification to homogeneity, and size exclusion chromatography coupled with multiangle laser light scattering (SEC-MALLS) analysis of the purified protein showed that it was dimeric. We showed that GabP transported γ-aminobutyric acid both and when overexpressed in Additionally, transport was greatly reduced in the presence of β-alanine, suggesting it could be either a substrate or inhibitor of GabP.
View Article and Find Full Text PDF(Mtb) is the etiological agent of tuberculosis. One-fourth of the global population is estimated to be infected with Mtb, accounting for ∼1.3 million deaths in 2017.
View Article and Find Full Text PDFThe peptidoglycan cell wall is an essential structure for the growth of most bacteria. However, many are capable of switching into a wall-deficient L-form state in which they are resistant to antibiotics that target cell wall synthesis under osmoprotective conditions, including host environments. L-form cells may have an important role in chronic or recurrent infections.
View Article and Find Full Text PDFToxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA.
View Article and Find Full Text PDFBacterial metabolism is fundamental to survival and pathogenesis. We explore how utilises amino acids as nitrogen sources, using a combination of bacterial physiology and stable isotope tracing coupled to mass spectrometry metabolomics methods. Our results define core properties of the nitrogen metabolic network from , such as: (i) the lack of homeostatic control of certain amino acid pool sizes; (ii) similar rates of utilisation of different amino acids as sole nitrogen sources; (iii) improved nitrogen utilisation from amino acids compared to ammonium; and (iv) co-metabolism of nitrogen sources.
View Article and Find Full Text PDFUpon host infection, secretes the tuberculosis necrotizing toxin (TNT) into the cytosol of infected macrophages, leading to host cell death by necroptosis. TNT hydrolyzes NAD in the absence of any exogenous cofactor, thus classifying it as a β-NAD glycohydrolase. However, TNT lacks sequence similarity with other NAD hydrolyzing enzymes and lacks the essential motifs involved in NAD binding and hydrolysis by these enzymes.
View Article and Find Full Text PDFMtATP-phosphoribosyltransferase (MtATP-PRT) is an enzyme catalyzing the first step of the biosynthesis of L-histidine in Mycobacterium tuberculosis, and proposed to be regulated via an allosteric mechanism. Native mass spectrometry (MS) reveals MtATP-PRT to exist as a hexamer. Conformational changes induced by L-histidine binding and the influence of buffer pH are determined with ion mobility MS, hydrogen deuterium exchange (HDX) MS, and analytical ultracentrifugation.
View Article and Find Full Text PDFThe human pathogen Mycobacterium tuberculosis (Mtb) likely utilizes host fatty acids as a carbon source during infection. Gluconeogenesis is essential for the conversion of fatty acids into biomass. A rate-limiting step in gluconeogenesis is the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate by a fructose bisphosphatase (FBPase).
View Article and Find Full Text PDFA number of species-specific polymethyl-branched fatty acid-containing trehalose esters populate the outer membrane of Mycobacterium tuberculosis. Among them, 2,3-diacyltrehaloses (DAT) and penta-acyltrehaloses (PAT) not only play a structural role in the cell envelope but also contribute to the ability of M. tuberculosis to multiply and persist in the infected host, promoting the intracellular survival of the bacterium and modulating host immune responses.
View Article and Find Full Text PDFMycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited.
View Article and Find Full Text PDFThe halo-acid dehalogenase (HAD) superfamily comprises a large number of enzymes that share a conserved core domain responsible for a diverse array of chemical transformations (e.g., phosphonatase, dehalogenase, phosphohexomutase, and phosphatase) and a cap domain that controls substrate specificity.
View Article and Find Full Text PDFFunctional assignment of enzymes encoded by the Mycobacterium tuberculosis genome is largely incomplete despite recent advances in genomics and bioinformatics. Here, we applied an activity-based metabolomic profiling method to assign function to a unique phosphatase, Rv1692. In contrast to its annotation as a nucleotide phosphatase, metabolomic profiling and kinetic characterization indicate that Rv1692 is a D,L-glycerol 3-phosphate phosphatase.
View Article and Find Full Text PDFMtATP-phosphoribosyltransferase catalyzes the first and committed step in l-histidine biosynthesis in Mycobacterium tuberculosis and is therefore subjected to allosteric feedback regulation. Because of its essentiality, this enzyme is being studied as a potential target for novel anti-infectives. To understand the basis for its regulation, we characterized the allosteric inhibition using gel filtration, steady-state and pre-steady-state kinetics, and the pH dependence of inhibition and binding.
View Article and Find Full Text PDFRecent advances in liquid chromatography and mass spectrometry have enabled the highly parallel, quantitative measurement of metabolites within a cell and the ability to trace their biochemical fates. In Mycobacterium tuberculosis (Mtb), these advances have highlighted major gaps in our understanding of central carbon metabolism (CCM) that have prompted fresh interpretations of the composition and structure of its metabolic pathways and the phenotypes of Mtb strains in which CCM genes have been deleted. High-throughput screens have demonstrated that small chemical compounds can selectively inhibit some enzymes of Mtb's CCM while sparing homologs in the host.
View Article and Find Full Text PDFMany anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis.
View Article and Find Full Text PDFHow we develop antibiotics is shaped by how we view infectious disease. Given the urgent need for new chemotherapeutics for tuberculosis and other infectious diseases, it is timely to reconsider a view of infectious disease that is strongly supported by contemporary evidence but that has rarely been applied in antibiotic development. This view recognizes the importance of nonreplicating bacteria in persistent infections, acknowledges the heterogeneity and stringency of chemical environments encountered by the pathogen in the host, and emphasizes metabolic adaptation of the host and the pathogen during their competition.
View Article and Find Full Text PDFThe Gcn5-related N-acetyltransferases (GNAT) comprise one of the largest enzyme superfamilies, with over 10 000 known members represented in all kingdoms of life. ChloroacetylCoenzymeA was prepared and demonstrated to be a substrate for several GNAT members. ChloroacetylCoA (ClAcCoA) is used by the Hat1 histone acetyltransferase to correctly acetylate histone H4 in a mixture of histone proteins.
View Article and Find Full Text PDF