Mutual information (MI) is consolidated as a robust similarity metric often used for medical image registration. Although MI provides a robust registration, it usually fails when the transform needed to register an image is too large due to MI local minima traps. This paper proposes and evaluates Generalized MI (GMI), using Tsallis entropy, to improve affine registration.
View Article and Find Full Text PDFMultiscale entropy (MSE) analysis is a fundamental approach to access the complexity of a time series by estimating its information creation over a range of temporal scales. However, MSE may not be accurate or valid for short time series. This is why previous studies applied different kinds of algorithm derivations to short-term time series.
View Article and Find Full Text PDFBrain image volumetric measurements (BVM) methods have been used to quantify brain tissue volumes using magnetic resonance imaging (MRI) when investigating abnormalities. Although BVM methods are widely used, they need to be evaluated to quantify their reliability. Currently, the gold-standard reference to evaluate a BVM is usually manual labeling measurement.
View Article and Find Full Text PDFThe introduction of the multiscale entropy (MSE) method was a milestone in the field of complex physiological signal analysis. However, since MSE is inapplicable for short signals, several variants of MSE have been proposed. One of the most important variants of MSE is the modified multiscale entropy (MMSE), even though it can still produce biased estimates due to the hard similarity criteria of sample entropy.
View Article and Find Full Text PDFHeart rate variability (HRV) analysis is widely used to investigate the autonomic regulation of the cardiovascular system. HRV is often analyzed using RR time series, which can be affected by different types of artifacts. Although there are several artifact correction methods, there is no study that compares their performances in actual experimental contexts.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2016
The analysis of heart rate variability (HRV) by nonlinear methods has been gaining increasing interest due to their ability to quantify the complexity of cardiovascular regulation. In this study, multiscale entropy (MSE) and refined MSE (RMSE) were applied to track the complexity of HRV as a function of time scale in three pathological conscious animal models: rats with heart failure (HF), spontaneously hypertensive rats (SHR), and rats with sinoaortic denervation (SAD). Results showed that HF did not change HRV complexity, although there was a tendency to decrease the entropy in HF animals.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015
Entropy analysis of images are usually performed using Shannon entropy, which calculates the probability of occurrency of each gray level on the image. However, not only the pixel gray level but also the spatial distribution of pixels might be important for image analysis. On the other hand, sample entropy (SampEn) is an important tool for estimation of irregularity in time series, which calculates the probability of pattern occurrence within the series.
View Article and Find Full Text PDFBackground: Prostate cancer is a serious public health problem that affects quality of life and has a significant mortality rate. The aim of the present study was to quantify the fractal dimension and Shannon's entropy in the histological diagnosis of prostate cancer.
Methods: Thirty-four patients with prostate cancer aged 50 to 75 years having been submitted to radical prostatectomy participated in the study.
Complexity in time series is an intriguing feature of living dynamical systems, with potential use for identification of system state. Although various methods have been proposed for measuring physiologic complexity, uncorrelated time series are often assigned high values of complexity, errouneously classifying them as a complex physiological signals. Here, we propose and discuss a method for complex system analysis based on generalized statistical formalism and surrogate time series.
View Article and Find Full Text PDFWe analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation.
View Article and Find Full Text PDFBackground: Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of MMP (TIMP) promote derangement of the extracellular matrix, which is ultimately reflected in plaque images seen on ultrasound. Videodensitometry can identify structural disturbances in plaques.
Objectives: To establish the correlations between values determined using videodensitometry in B-mode ultrasound images of advanced carotid plaques and the total expression of MMP-9 and TIMP-1 in these removed plaques.
Background: Mature carotid plaques are complex structures, and their histological classification is challenging. The carotid plaques of asymptomatic and symptomatic patients could exhibit identical histological components.
Objectives: To investigate whether matrix metalloproteinase 9 (MMP-9), tissue inhibitor of MMP (TIMP), and cyclooxygenase-2 (COX-2) have different expression levels in advanced symptomatic carotid plaques, asymptomatic carotid plaques, and normal tissue.
Background: To analyse histological composition and progression of carotid plaque.
Methods: Thirty-one patients (22 males, mean age 68.03 +/- 7.