Publications by authors named "Luiz Gonzaga de Franca Lopes"

There has been growing effort in the scientific community to develop new antibiotics to address the major threat of bacterial resistance. One promising approach is the use of metal complexes that provide broader opportunities. Among these systems, polypyridine-ruthenium(II) complexes have received particular attention as drug candidates.

View Article and Find Full Text PDF

Metallocompounds have emerged as promising new anticancer agents, which can also exhibit properties to be used in photodynamic therapy. Here, we prepared two ruthenium-based compounds with a 2,2'-bipyridine ligand conjugated to an anthracenyl moiety. These compounds coded and contain 2,2'-bipyridine or 1,10-phenathroline as auxiliary ligands, respectively, which provide quite a distinct behavior.

View Article and Find Full Text PDF

New antibiotic agents are urgently needed worldwide to combat the increasing tolerance and resistance of pathogenic fungi and bacteria to current antimicrobials. Here, we looked at the antibacterial and antifungal effects of minor quantities of cetyltrimethylammonium bromide (CTAB), ca. 93.

View Article and Find Full Text PDF

Nitrosyl ruthenium complexes are promising platforms for nitric oxide (NO) and nitroxyl (HNO) release, which exert their therapeutic application. In this context, we developed two polypyridinic compounds with the general formula -[Ru(NO)(bpy)(L)], where L is an imidazole derivative. These species were characterized by spectroscopic and electrochemical techniques, including XANES/EXAFS experiments, and further supported by DFT calculations.

View Article and Find Full Text PDF

For more than 70 years, sodium nitroprusside (SNP) has been used to treat severe hypertension in hospital emergency settings. During this time, a few other clinical uses have also emerged such as in the treatment of acute heart failure as well as improving mitral incompetence and in the intra- and perioperative management during heart surgery. This drug functions by releasing nitric oxide (NO), which modulates several biological processes with many potential therapeutic applications.

View Article and Find Full Text PDF

Metal coordination complexes are chemotherapeutic and anti-inflammatory agents. The ruthenium complex FOR811A ([Ru(bpy)(2-MIM)Cl](PF)) FOR811A was evaluated in mice models of acute inflammation and behavioral tests. Animals received FOR811A (3, 10 or 30 mg/kg; i.

View Article and Find Full Text PDF

This study aimed to investigate the synthesis and potential vasodilator effect of a novel ruthenium complex, cis-[Ru(bpy)(2-MIM)(NO)]PF (bpy = 2,2'-bipyridine and 2-MIM = 2-methylimidazole) (FOR711A), containing an imidazole derivative via an in silico molecular docking model using β1 H-NOX (Heme-nitric oxide/oxygen binding) domain proteins of reduced and oxidized soluble guanylate cyclase (sGC). In addition, pharmacokinetic properties in the human organism were predicted through computational simulations and the potential for acute irritation of FOR711A was also investigated in vitro using the hen's egg chorioallantoic membrane (HET-CAM). FOR711A interacted with sites of the β1 H-NOX domain of reduced and oxidized sGC, demonstrating shorter bond distances to several residues and negative values of total energy.

View Article and Find Full Text PDF

Ruthenium compounds, nitric oxide donors in biologic systems, have emerged as a promising therapeutic alternative to conventional drugs in anticancer chemotherapy and as a potential neuroprotective agent with fewer cytotoxic effects. This minireview summarizes promising studies with ruthenium complexes and their roles in cancer, neuroinflammation, neurovascular, and neurodegenerative diseases. The up-to-date evidence supports that ruthenium-based compounds have beneficial effects against gliomas and other types of brain cancers, reduce motor symptoms in models of cerebral ischemia-reperfusion, and may act in the control of nociceptive and inflammatory events, such as those seen in early Alzheimer's disease.

View Article and Find Full Text PDF

Nitric oxide (NO) has emerged as a promising antibacterial agent, where NO donor compounds have been explored. Here, we investigated the role of a silica nanoparticle containing nitroprusside (MPSi-NP) as a NO donor agent against methicillin-sensitive (ATCC 25,923 and ATCC 12228) and methicillin-resistant (ATCC 700,698 and ATCC 35984) Staphylococcus strains. Biofilm inhibition was studied along with antibiotic activity in combination with standard antibiotics (ampicillin and tetracycline).

View Article and Find Full Text PDF

Cardiovascular diseases include all types of disorders related to the heart or blood vessels. High blood pressure is an important risk factor for cardiac complications and pathological disorders. An increase in circulating angiotensin-II is a potent stimulus for the expression of reactive oxygen species and pro-inflammatory cytokines that activate oxidative stress, perpetuating a deleterious effect in hypertension.

View Article and Find Full Text PDF

A chemical activation study of the thiocarbonyl-type antitubercular prodrugs, ethionamide (ETH), thioacetazone (TAZ), and isoxyl (ISO), was performed. Biomimetic oxidation of ethionamide using HO (1 equiv) led to ETH-SO as the only stable -oxide compound, which was found to occur in solution in the preferential form of a sulfine (ETH═S═O vs the sulfenic acid tautomer ETH-S-OH), as previously observed in the crystal state. It was also demonstrated that ETH-SO is capable of reacting with amines, as the putative sulfinic derivative (ETH-SOH) was supposed to do.

View Article and Find Full Text PDF

We aimed at evaluating the anti-asthmatic effect of cis-[Ru(bpy)2(2-MIM)(NO)](PF6)3 (FOR811A), a nitrosyl-ruthenium compound, in a murine model of allergic asthma. The anti-asthmatic effects were analyzed by measuring the mechanical lung and morphometrical parameters in female Swiss mice allocated in the following groups: untreated control (Ctl+Sal) and control treated with FOR811A (Ctl+FOR), along asthmatic groups untreated (Ast+Sal) and treated with FOR811A (Ast+FOR). The drug-protein interaction was evaluated by in-silico assay using molecular docking.

View Article and Find Full Text PDF

Nitric oxide (NO) and nitroxyl (HNO) have gained broad attention due to their roles in several physiological and pathophysiological processes. Remarkably, these sibling species can exhibit opposing effects including the promotion of angiogenic activity by NO compared to HNO, which blocks neovascularization. While many NO donors have been developed over the years, interest in HNO has led to the recent emergence of new donors.

View Article and Find Full Text PDF

The aim of this study was to investigate the antibacterial activity, antibiotic-associated synergy, and anti-biofilm activity of the ruthenium complex, -[RuCl (dppb) (bqdi)] (RuNN). RuNN exhibited antimicrobial activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 15.6 to 62.

View Article and Find Full Text PDF

The aim of this study was to investigate the antihypertensive properties of cis-[Ru(bpy)ImN(NO)] (FOR0811) in normotensive and in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. Vasorelaxant effects were analyzed by performing concentration response curve to FOR0811 in rat aortic rings in the absence or presence of 1H-[1,2,4]-oxadiazolo-[4,3,-a]quinoxalin-1-one (ODQ), L-cysteine or hydroxocobalamin. Normotensive and L-NAME-hypertensive rats were treated with FOR0811 and the effects in blood pressure and heart rate variability in the frequency domain (HRV) were followed.

View Article and Find Full Text PDF
Article Synopsis
  • A new complex, cis-[Ru(bpy)(Met)](PF), was created using L-methionine and 2,2'-bipyridine and was fully characterized.
  • When exposed to blue and green light, this complex released methionine and produced another compound that interacted with DNA, resulting in DNA cleavage.
  • The resulting compound demonstrated antibacterial properties, especially against certain bacteria, with enhanced effects when exposed to blue light, suggesting potential applications in drug development and peptide chemistry.
View Article and Find Full Text PDF

Inflammation is a physiological process triggered in response to tissue damage, and involves events related to cell recruitment, cytokines release and reactive oxygen species (ROS) production. Failing to control the process duration lead to chronification and may be associated with the development of various pathologies, including autoimmune diseases and cancer. Considering the pharmacological potential of metal-based compounds, two new ruthenium complexes were synthesized: cis-[Ru(NO)(bpy)(5NIM)]PF (1) and cis-[RuCl(bpy)(MTZ)]PF (2), where bpy = 2,2'-bipyridine, 5NIM = 5-nitroimidazole and MTZ = metronidazole.

View Article and Find Full Text PDF

Purpose: To evaluate the effect of Rut-bpy (Cis-[Ru(bpy)2(SO3)(NO)]PF 6), a novel nitric oxide donor, able to modulate the histological changes caused by the NASID (meloxicam).

Methods: Wistar rats were assigned into three groups (n=6 rats/group): Sham group (saline solution), NSAID group (meloxicam - 15 mg/kg) and Rut-bpy group (100 mg/kg of Rut-bpy associated with 15mg/kg of meloxicam). At the end of experiments, kidneys were removed for histological study, fractal dimension and lacunarity in all animals.

View Article and Find Full Text PDF

Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. There are many complications presented by the current treatment, as high toxicity, high cost and parasite resistance, making the development of new therapeutic agents indispensable. The present study aims to evaluate the leishmanicidal potential of ruthenium nitrosyl complex cis-[Ru(bpy)(SO)(NO)](PF) against Leishmania (Viannia) braziliensis.

View Article and Find Full Text PDF

A major challenge to the control and eventual eradication of Mycobacterium tuberculosis infection is this pathogen's prolonged dormancy. The heme-based oxygen sensor protein DevS (DosS) plays a key role in this phenomenon, because it is a major activator of the transcription factor DevR. When DevS is active, its histidine protein kinase region is ON and it phosphorylates and activates DevR, which can induce the transcription of the dormancy regulon genes.

View Article and Find Full Text PDF

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite.

View Article and Find Full Text PDF

Heme-based sensors have emerged during the last 20years as being a large family of proteins that occur in all kingdoms of life. A myriad of biological adaptations are associated with these sensors, which include vasodilation, bacterial virulence, dormancy, chemotaxis, biofilm formation, among others. Due to the key activities regulated by these proteins along with many other systems that use similar output domains, there is a growing interest in developing small molecules as their regulators.

View Article and Find Full Text PDF

Parasites of the genus are capable of inhibiting effector functions of macrophages. These parasites have developed the adaptive ability to escape host defenses; for example, they inactivate the NF-B complex and suppress iNOS expression in infected macrophages, which are responsible for the production of the major antileishmanial substance nitric oxide (NO), favoring then its replication and successful infection. Metal complexes with NO have been studied as potential compounds for the treatment of certain tropical diseases, such as ruthenium compounds, known to be exogenous NO donors.

View Article and Find Full Text PDF

Conformational changes associated to sensing mechanisms of heme-based protein sensors are a key molecular event that seems to modulate not only the protein activity but also the potential of the Fe redox couple of the heme domain. In this work, midpoint potentials (E) assigned to the Fe redox couple of the heme domain of FixL from Rhizobium etli (ReFixL) in the unliganded and liganded states were determined by spectroelectrochemistry in the presence of inorganic mediators. In comparison to the unliganded ReFixL protein (+19mV), the binding to ligands that switch off the kinase activity induces a negative shift, i.

View Article and Find Full Text PDF

Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO(-) (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the Ru(II) complex [Ru(bpy)2(SO3)(NO)](+) (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents.

View Article and Find Full Text PDF