Recently, rare-earth elements (REEs) have attracted great interest due to their importance in several fields, such as the high-technology and medicine industries. Due to the recent intensification of the use of REEs in the world and the resulting potential impact on the environment, new analytical approaches for their determination, fractionation and speciation are needed. Diffusive gradients in thin films are a passive technique already used for sampling labile REEs, providing in situ analyte concentration, fractionation and, consequently, remarkable information on REE geochemistry.
View Article and Find Full Text PDFThe present work reports the development of a novel electrochemical sensor for the selective detection of fructose. The sensor was developed through electropolymerization of a molecularly imprinted polymer film on a reduced graphene oxide modified electrode. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, atomic force microscopy and RAMAN spectroscopy.
View Article and Find Full Text PDFThe present work reports the development of an electrochemical sensor based on molecularly imprinted polymer for the determination of d-xylose. This is the first report of its kind in the literature. The sensor was prepared through the modification of a glassy carbon electrode with reduced graphene oxide and molecularly imprinted poly(phenol) film.
View Article and Find Full Text PDFTime-domain nuclear magnetic resonance and chemometrics were used to predict color parameters, such as lightness (L*), redness (a*), and yellowness (b*) of beef (Longissimus dorsi muscle) samples. Analyzing the relaxation decays with multivariate models performed with partial least-squares regression, color quality parameters were predicted. The partial least-squares models showed low errors independent of the sample size, indicating the potentiality of the method.
View Article and Find Full Text PDF