Biotechnol Biofuels Bioprod
May 2024
Background: The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance.
View Article and Find Full Text PDFProduction of second-generation ethanol from lignocellulosic residues should be fueling the energy matrix in the near future. Lignocellulosic biomass has received considerable attention as an alternative renewable resource toward reducing the demand for fossil energy sources, contributing to a future sustainable bio-based economy. Fermentation of lignocellulosic hydrolysates poses many scientific and technological challenges as the drawback of Saccharomyces cerevisiae's inability in fermenting pentose sugars (derived from hemicellulose).
View Article and Find Full Text PDFEthanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the PE-2, a predominant bioethanol strain in Brazil.
View Article and Find Full Text PDFThe determination of ethanol in fermented substrates is an important parameter for monitoring the production of distilled beverage samples. The correct measurement of its content has a direct impact on the profitability of the process. In this work, a diffusive micro-distillation device (DMDD) is proposed that allows the determination of ethanol directly in the fermented or distilled beverages samples.
View Article and Find Full Text PDFTwo strains of a novel yeast species were isolated from rotting wood of an ornamental tree (purple quaresmeira, Tibouchina granulosa, Melastomataceae) in an Atlantic Rainforest area in Brazil. Analysis of the sequences of the internal transcribed spacer (ITS-5.8S) region and the D1/D2 domains of the large subunit rRNA gene showed that this species belongs to the Spathaspora clade, and is phylogenetically related to Spathaspora brasiliensis, Candida materiae and Sp.
View Article and Find Full Text PDFAlthough first-generation fuel ethanol is produced in Brazil from sugarcane-based raw materials with high efficiency, there is still little knowledge about the microbiology, the biochemistry and the molecular mechanisms prevalent in the non-aseptic fermentation environment. Learning-by-doing has hitherto been the strategy to improve the process so far, with further improvements requiring breakthrough technologies. Performing experiments at an industrial scale are often expensive, complicated to set up and difficult to reproduce.
View Article and Find Full Text PDFIndependent surveys of yeasts associated with lignocellulosic-related materials led to the discovery of a novel yeast species belonging to the Cyberlindnera clade (Saccharomycotina, Ascomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit rRNA gene showed that this species is related to C. japonica, C.
View Article and Find Full Text PDFThe draft genome sequence of the yeast Spathaspora arborariae UFMG-HM19.1A(T) (CBS 11463 = NRRL Y-48658) is presented here. The sequenced genome size is 12.
View Article and Find Full Text PDFThe yeast Dekkera bruxellensis is considered to be very well adapted to industrial environments, in Brazil, USA, Canada and European Countries, when different substrates are used in alcoholic fermentations. Our previous study described its fermentative profile with a sugarcane juice substrate. In this study, we have extended its physiological evaluation to fermentation situations by using sugarcane molasses as a substrate to replicate industrial working conditions.
View Article and Find Full Text PDFBacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains.
View Article and Find Full Text PDFThe production of fuel ethanol from sugarcane-based raw materials in Brazil is a successful example of a large-scale bioprocess that delivers an advanced biofuel at competitive prices and low environmental impact. Two to three fed-batch fermentations per day, with acid treatment of the yeast cream between consecutive cycles, during 6-8 months of uninterrupted production in a nonaseptic environment are some of the features that make the Brazilian process quite peculiar. Along the past decades, some wild Saccharomyces cerevisiae strains were isolated, identified, characterized, and eventually, reintroduced into the process, enabling us to build up knowledge on these organisms.
View Article and Find Full Text PDFThe Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil.
View Article and Find Full Text PDFMost of the metals released from industrial activity, among them are cadmium (Cd) and nickel (Ni), inhibit the productivity of cultures and affect microbial metabolism. In this context, the aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Cd and Ni on cell growth, viability, budding rate and trehalose content of Saccharomyces cerevisiae, likely because of adsorption and chelating action. For this purpose, the yeast was grown batch-wise in YED medium supplemented with selected amounts of vinasse and Cd or Ni.
View Article and Find Full Text PDFA spectrophotometric flow injection procedure involving N,N-dimethyl-p-phenylenediamine (DMPD) is applied to the sulfide monitoring of a sugar fermentation by Saccharomyces cerevisiae under laboratory conditions. The gaseous chemical species evolving from the fermentative process, mainly CO(2), are trapped allowing a cleaned sample aliquot to be collected and introduced into the flow injection analyzer. Measurement rate, signal repeatability, detection limit and reagent consumption per measurement were estimated as 150 h(-1), 0.
View Article and Find Full Text PDFOwing to its toxicity, aluminum (Al), which is one of the most abundant metals, inhibits the productivity of many cultures and affects the microbial metabolism. The aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Al on cell growth, viability, and budding, as the likely result of possible chelating action. For this purpose, Fleischmann's yeast (Saccharomyces cerevisiae) was used in growth tests performed in 125-mL Erlenmeyer flasks containing 30 mL of YED medium (5.
View Article and Find Full Text PDFBrazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil.
View Article and Find Full Text PDF