Publications by authors named "Luiz C B Torres"

While large margin classifiers are originally an outcome of an optimization framework, support vectors (SVs) can be obtained from geometric approaches. This article presents advances in the use of Gabriel graphs (GGs) in binary and mul-ticlass classification problems. For Chipclass, a hyperparameter-less and optimization-less GG-based binary classifier, we discuss how activation functions and support edge (SE)-centered neurons affect the classification, proposing smoother functions and structural SV (SSV)-centered neurons to achieve margins with low probabilities and smoother classification contours We extend the neural network architecture, which can be trained with backpropagation with a softmax function and a cross-entropy loss, or by solving a system of linear equations.

View Article and Find Full Text PDF

The number of connected embedded edge computing Internet of Things (IoT) devices has been increasing over the years, contributing to the significant growth of available data in different scenarios. Thereby, machine learning algorithms arise to enable task automation and process optimization based on those data. However, due to some learning methods' computational complexity implementing geometric classifiers, it is a challenge to map these on embedded systems or devices with limited resources in size, processing, memory, and power, to accomplish the desired requirements.

View Article and Find Full Text PDF

This brief presents a geometrical approach for obtaining large margin classifiers. The method aims at exploring the geometrical properties of the data set from the structure of a Gabriel graph, which represents pattern relations according to a given distance metric, such as the Euclidean distance. Once the graph is generated, geometrical support vectors (SVs) (analogous to support vector machines (SVMs) SVs) are obtained in order to yield the final large margin solution from a Gaussian mixture model.

View Article and Find Full Text PDF