Publications by authors named "Luiz C A Oliveira"

Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion.

View Article and Find Full Text PDF

Objectives: The development of new bleaching agents with minimum concentration of hydrogen peroxide (HP), without adverse effects, and with bleaching effectiveness, has great clinical relevance. The aim of this study was to evaluate the bleaching efficacy and cytotoxicity of a new niobium-based bleaching gel, compared to already available HP-based gels.

Materials And Methods: For the bleaching efficacy analysis, 40 bovine incisors were randomly divided into 4 groups according to the established bleaching protocol: control, untreated; 35HP, 35% HP bleaching gel; 6HP, 6% HP bleaching gel; NbHP, niobium gel associated with 3% HP gel.

View Article and Find Full Text PDF

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy.

View Article and Find Full Text PDF

Mesoporous carbon (MC) derived from cassava starch was used to remove Acid Blue 113 azo dye from aqueous solutions. The influence of temperature, pH, ionic strength, and the adsorbent dose was investigated in a set of batch experiments. Experimental data showed that Acid Blue 113 adsorption was higher in the acid pH range than in the alkaline one, that dye adsorption increases when the ionic strength and temperature increase, and that adsorption results presented a good correlation with the Langmuir isotherm model.

View Article and Find Full Text PDF

Sulphur, not phosphorus, is the only known third-row element capable of experiencing an electrostatic gauche effect with fluorine. Some six-membered rings containing an endocyclic phosphorus atom and a β-fluorine substituent that can interconvert to axial (gauche relative to phosphorus) and equatorial positions were then analysed. While phosphines do not establish an electrostatic attraction between fluorine and phosphorus, some oxidised forms exhibit surprising stability for the sterically disfavoured axial orientation.

View Article and Find Full Text PDF

Water contamination is a common problem, especially considering dyes and drugs disposal. A possible and effective treatment method to remove these organic pollutants from water is photocatalytic reaction. This study aimed to improve the photocatalytic properties of TiO using iron oxides (Ti/Fe composite).

View Article and Find Full Text PDF

If not properly treated, water contaminated with chromium (Cr(VI)) and lead (Pb(II)) can cause severe damage to health due to the accumulation of those toxic metals in the human body. Therefore, in this work, three iron oxides, i.e.

View Article and Find Full Text PDF

Environmental contamination has been a cause of concern worldwide, being aggravated by anthropogenic activities carried out without the correct disposal of toxic products in the various habitats on our planet. In Brazil, mining companies are responsible for the contamination of large river basins with toxic elements from mining activities. Among these elements, arsenic draws attention because it is highly carcinogenic and found in waters in concentrations above those recommended by regulatory agencies.

View Article and Find Full Text PDF

Furfural chemistry is one of the most promising platforms directly derived from lignocellulose biomass. In this study, a niobium-based catalyst (mNb-bc) was synthesized by a new fast and simple method. This new method uses microemulsion to obtain a catalyst with a high specific surface area (340 m g), defined mesoporosity, and high acidity (65 μmol g).

View Article and Find Full Text PDF

The aim of the study was to evaluate if gold-coated superparamagnetic iron oxide nanoparticles (AuSPION) magnetic-targeted to the arthritic articulation of collagen induced arthritis (CIA) rats are able to ameliorate rheumatoid arthritis without producing significant biological adverse effects in comparison to colloidal Au nanoparticles (AuC) and metotrexate (MTX). Male Wistar rats were divided into control; arthritic; AuSPION (150 μg kg); AuC (150 μg kg) and MTX (2.5 μg kg).

View Article and Find Full Text PDF

The global demand for iron ore with high iron contents to supply the steel industry is associated, in most countries, with the generation of tailings from mineral processing. The chemical compositions of iron ore tailings (basically FeO and SiO) make them an excellent candidate as a catalyst for advanced oxidation processes (AOPs), especially the Fenton process and its derivatives. Therefore, this paper aimed to transform iron ore tailings from tailing dams into catalysts able to activate HO for the purpose of treating, in a continuous flow, effluents contaminated with organic dyes, employing methylene blue as a model molecule.

View Article and Find Full Text PDF

l-Cystine functionalized δ-FeOOH nanoparticles (Cys-δ-FeOOH) were prepared by a cheap and straightforward method for using as an adsorbent of Hg(II) in aqueous solution. X-ray diffraction (XRD), attenuated total reflectance infrared spectroscopy (ATR-IR), and Raman spectroscopy confirmed that Cys-δ-FeOOH was successfully synthesized. Cys-δ-FeOOH with 14 nm crystal size, 34 m g surface area, and 9 nm pore size were produced.

View Article and Find Full Text PDF

FeO nanoparticles were prepared by co-precipitation of Fe and Fe and then modified with Au to produce an effective adsorbent (FeO/Au) for aqueous Hg(II) in contaminated water. Rietveld refinement on the XRD pattern confirmed that the FeO/Au was synthesised. Mössbauer spectra exhibited broad and asymmetric resonance lines with two sextets which can be assigned to tetrahedral Fe; and octahedral Fe/Fe.

View Article and Find Full Text PDF

In this work, a two-dimensional coordination polymer was synthesized and the structure was determined by single-crystal X-ray diffraction. The crystal structure belongs to the space group Pna21 and was characterized by Raman and FT-infrared spectroscopy, powder X-ray diffraction and Brunauer-Emmett-Teller surface area analysis. Catalyst activities were evaluated through the synthesis of glycerol carbonate from glycerol and urea using a batch reactor.

View Article and Find Full Text PDF

Melanoma is the most aggressive type of skin cancer with high rates of mortality. Despite encouraging advances demonstrated by anticancer drug carriers in recent years, developing ideal drug delivery systems to target tumor microenvironment by overcoming physiological barriers and chemotherapy side effects still remain intimidating challenges. Herein, we designed and developed a novel carbohydrate-based prodrug composed of carboxymethylcellulose (CMC) polymer bioconjugated with anticancer drug doxorubicin hydrochloride (DOX) by covalent amide bonds and crosslinked with citric acid for producing advanced hydrogels.

View Article and Find Full Text PDF

Semiconductors based on Fe/Nb oxides can present both solar sensitivity and high catalytic activity. However, there is still a lack regarding the comparison between different routes to produce Fe/Nb-based solar photocatalysts and the evaluation of the impact of the synthesis operating conditions on the material properties. In this work, Fe/NbO ratio, type of precipitating agent, presence/absence of washing stage, and temperature of calcination were verified to be the most relevant parameters in the synthesis by the co-precipitation method.

View Article and Find Full Text PDF

Composite materials from PET and red mud (RM) wastes were used as catalysts for environmental application such as the wastewater treatment. The PET-RM catalysts were obtained by a mechanical mixture of the residues followed by thermal treatment under an N atmosphere (300°C/1 h). An additional activation of the composites with CO was investigated (at 800-900°C) to reduce the red mud basicity.

View Article and Find Full Text PDF

A new class of polyoxoniobate complex has been synthesized and characterized as a novel anticancer agent for photodynamic therapy. The complex inhibits the growth of chronic myelogenous leukemia cells with an IC value of 30 μM, in the dark. However, upon exposure to light (365 nm) there is a fivefold increase in the cytotoxic activity.

View Article and Find Full Text PDF

The high toxicity and potential arsenic accumulation in several environments have encouraged the development of technologies for its removal from contaminated waters. However, the arsenic released into aquatic environment comes mainly from extremely acidic mining effluents, making harder to find stable adsorbents to be used in these conditions. In this work, K-jarosite particles were synthesized as a stable adsorbent in acidic medium for eliminating arsenic from contaminated water.

View Article and Find Full Text PDF

This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system.

View Article and Find Full Text PDF

The contamination of water with arsenic has aroused concern around the world due to its toxic effects. Thus, the development of low-cost technologies for treating water contaminated with toxic metals is highly advisable. Adsorption is an attractive technology for purification of contaminated water, but it only transfers the contaminant from water to the solid adsorbent, which provokes another problem related to solid residue disposal.

View Article and Find Full Text PDF

The conversion of solar energy into hydrogen fuel by splitting water into photoelectrochemical cells (PEC) is an appealing strategy to store energy and minimize the extensive use of fossil fuels. The key requirement for efficient water splitting is producing a large band bending (photovoltage) at the semiconductor to improve the separation of the photogenerated charge carriers. Therefore, an attractive method consists in creating internal electrical fields inside the PEC to render more favorable band bending for water splitting.

View Article and Find Full Text PDF

In this study, we obtained a composite based on carbon/iron oxide from red mud and PET (poly(ethylene terephthalate)) wastes by mechanical mixture (10, 15 and 20wt.% of PET powder/red mud) followed by a controlled thermal treatment at 400°C under air. XRD analyses revealed that the α-Fe2O3 is the main phase formed from red mud.

View Article and Find Full Text PDF

FeO-SiO composites were prepared by impregnation (sample FeIMP) or doping (sample FeDOP) in the structure of porous silica. The dye removal capacity of the materials was investigated through adsorption and oxidation studies of methylene blue and rhodamine B. N adsorption/desorption measurements on FeIMP and FeDOP resulted in specific areas of 27 and 235 m g, respectively.

View Article and Find Full Text PDF

An easy, fast and environment-friendly method for COD determination in water is proposed. The procedure is based on the oxidation of organic matter by the H2O2/Fe(3-x)Co(x)O4 system. The Fe(3-x)Co(x)O4 nanoparticles activate the H2O2 molecule to produce hydroxyl radicals, which are highly reactive for oxidizing organic matter in an aqueous medium.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionba57e8oag1v7bgveinun8pfvo0nfmf8j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once