The Arecaceae family has a worldwide distribution, especially in tropical and subtropical regions. We sequenced the chloroplast genomes of Acrocomia intumescens and A. totai, widely used in the food and energy industries; Bactris gasipaes, important for palm heart; Copernicia alba and C.
View Article and Find Full Text PDFThe Brazilian palm fruits and hearts-of-palm of Euterpe edulis, E. oleracea and E. precatoria are an important source for agro-industrial production, due to overexploitation, conservation strategies are required to maintain genetic diversity.
View Article and Find Full Text PDFThe genus Passiflora comprises a large group of plants popularly known as passionfruit, much appreciated for their exotic flowers and edible fruits. The species (∼500) are morphologically variable (e.g.
View Article and Find Full Text PDFWhile two lineages of retrotransposons were more abundant in larger Passiflora genomes, the satellitome was more diverse and abundant in the smallest genome analysed. Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within Passiflora genus, a tenfold variation in genome size, not attributed to polyploidy, is known.
View Article and Find Full Text PDFChloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group.
View Article and Find Full Text PDFPLoS One
July 2020
Breeding for yield and fruit quality traits in passion fruits is complex due to the polygenic nature of these traits and the existence of genetic correlations among them. Therefore, studies focused on crop management practices and breeding using modern quantitative genetic approaches are still needed, especially for Passiflora alata, an understudied crop, popularly known as the sweet passion fruit. It is highly appreciated for its typical aroma and flavor characteristics.
View Article and Find Full Text PDFA significant proportion of plant genomes is consists of transposable elements (TEs), especially LTR retrotransposons (LTR-RTs) which are known to drive genome evolution. However, not much information is available on the structure and evolutionary role of TEs in the Passifloraceae family (Malpighiales order). Against this backdrop, we identified, characterized, and inferred the potential genomic impact of the TE repertoire found in the available genomic resources for Passiflora edulis, a tropical fruit species.
View Article and Find Full Text PDFPassiflora edulis is the most widely cultivated species of passionflowers, cropped mainly for industrialized juice production and fresh fruit consumption. Despite its commercial importance, little is known about the genome structure of P. edulis.
View Article and Find Full Text PDF