Biological and engineering studies of Hess-Murray's law are focused on assemblies of tubes with impermeable walls. Blood vessels and airways have permeable walls to allow the exchange of fluid and other dissolved substances with tissues. Should Hess-Murray's law hold for bifurcating systems in which the walls of the vessels are permeable to fluid? This paper investigates the fluid flow in a porous-walled T-shaped assembly of vessels.
View Article and Find Full Text PDFExercise is recognized to prevent and attenuate several metabolic and cardiovascular disorders. Obesity is commonly related to cardiovascular diseases, frequently resulting in heart failure and death. To elucidate the effects of acute exercise in heart tissue from obese animals, 12-week-old C57BL6/J obese (ob/ob) and non-obese (ob/OB) mice were submitted to a single bout of swimming and had their hearts analyzed by proteomic techniques.
View Article and Find Full Text PDFBackground: Regular exercises are commonly described as an important factor in health improvement, being directly related to contractile force development in cardiac cells.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises.
View Article and Find Full Text PDFExercise research has always drawn the attention of the scientific community because it can be widely applied to sport training, health improvement, and disease prevention. For many years numerous tools have been used to investigate the several physiological adaptations induced by exercise stimuli. Nowadays a closer look at the molecular mechanisms underlying metabolic pathways and muscular and cardiovascular adaptation to exercise are among the new trends in exercise physiology research.
View Article and Find Full Text PDF