Publications by authors named "Luismar M Porto"

Purpose: Mucogingival defects (MGDs), such as dental root recessions, decreased vestibular depth, and absence of keratinized tissues, are commonly seen in dental clinics. MGDs may result in functional, aesthetic, and hygienic concerns. In these situations, autogenous soft tissue grafts are considered the gold-standard treatment.

View Article and Find Full Text PDF

Microvascular channel growth and inhibition, such as what occurs in vasculogenic mimicry, are generally represented in tables or shown in bar graphs. Although informative, those representations lack accurate predictions on dosage or the opportunity to report an unbiased metric when one wants to compare different signal dependence, for instance, the concentration of different drugs or enzymes or expression levels of particular genes.Mathematical model building is an exercise that makes you think of which are the key variables of a particular phenomenon and how they affect the targeting experimental output.

View Article and Find Full Text PDF

Background: Bacterial nanocellulose (BNC) has been used as cell support in numerous tissue engineering studies. Its use can be explained based on the fact its structure allows the creation of a required microenvironment for an ideal material, which supports 3D cell culture. Its structure and interconnected pores lead to animal cells adhesion and proliferation, also allowing oxygen and nutrients transportation.

View Article and Find Full Text PDF

Objectives: The aim of this study was to evaluate bacterial nanocellulose (BNC) membranes incorporated with antimicrobial agents regarding cytotoxicity in fibroblasts of the periodontal ligament (PDLF), antimicrobial activity, and inhibition of multispecies biofilm formation.

Materials And Methods: The tested BNC membranes were BNC + 1% clindamycin (BNC/CLI); BNC + 0.12% chlorhexidine (BNC/CHX); BNC + nitric oxide (BNC/NO); and conventional BNC (BNC; control).

View Article and Find Full Text PDF

The objective of this work was to develop a subgingival biofilm model using a stirred bioreactor. Discs of bovine teeth were adapted to a stirred bioreactor filled with a culture medium containing bacterial species associated with periodontal health or disease. After anaerobic incubation, the biofilms growing on the substratum surfaces were collected and analyzed.

View Article and Find Full Text PDF

The low interaction between ultra high molecular weight polyethylene (UHMWPE) and hydroxyapatite (HA) has been one of the problems that results in a composite material with low mechanical and tribological performance due to the formation of agglomerates and microstructural defects. These properties affect the quality of the material when used for total joint implants and other applications in hard tissue engineering. This study investigated the effect of the addition of organophilic bentonite (BO) into the interface HA and UHMWPE.

View Article and Find Full Text PDF

Vasculogenic mimicry process has generated great interest over the past decade. So far, however, there have been only a few matrices available that allow us to study that process in vitro. Here, we have developed an innovative hydrogel platform with defined composition that mimics the structural architecture and biological functions of the extracellular matrix for vasculogenic mimicry of human melanoma cells (SK-MEL-28).

View Article and Find Full Text PDF

The main aim of this study was to assess the physicochemical and biological properties of a novel poly(ether ether ketone) (PEEK) composite containing 30%wt natural amorphous silica fibers (NASF). PEEK and NASF powders were previously functionalized by atomization and citric acid in order to enhance adhesion between polymeric matrix and fillers. Then, composites were produced by cold compression molding technique at 350°C for 3h.

View Article and Find Full Text PDF

Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility.

View Article and Find Full Text PDF

Deoxyviolacein is a microbial drug with biological activity against tumors, gram-positive bacteria, and fungal plant pathogens. Here, we describe an Escherichia coli strain for heterologous production of this high-value drug from glycerol. Plasmid-based expression of the deoxyviolacein cluster vioABCE was controlled by the araBAD promoter and induction by L-arabinose.

View Article and Find Full Text PDF

Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes.

View Article and Find Full Text PDF

When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.

View Article and Find Full Text PDF

Violacein and deoxyviolacein are interesting therapeutics against pathogenic bacteria and viruses as well as tumor cells. In the present work, systems-wide metabolic engineering was applied to target Escherichia coli, a widely accepted recombinant host in pharmaceutical biotechnology, for production of these high-value products. The basic producer, E.

View Article and Find Full Text PDF

An electrically conducting composite based on bacterial cellulose (BC) and polypyrrole (PPy) was prepared through in situ oxidative polymerization of pyrrole (Py) in the presence of BC membrane using ammonium persulfate (APS), as an oxidant. The electrical conductivity, morphology, mechanical properties and thermal stability of the composites obtained using APS (BC/PPy·APS) were evaluated and compared with BC/PPy composites prepared using as oxidant agent Iron III chloride hexahydrate (FeCl3·6H2O). The morphology of the BC/PPy·APS composites is characterized by spherical conducting nanoparticles uniformly distributed on the BC nanofiber surface, while the composites produced with FeCl3·6H2O (BC/PPy·FeCl3) is composed of a continuous conducting polymer layer coating the BC-nanofibers.

View Article and Find Full Text PDF

Groups of genes that produce exopolysaccharide with a N-acetyl-D-glucosamine monomer are in the genome of several pathogenic bacteria. Chromobacterium violaceum, an opportunistic pathogen, has the operon hmsHFR-CV2940, whose proteins can synthesize such polysaccharide. In this work, multiple alignments among proteins from bacteria that synthesize such polysaccharide were used to verify the existence of amino acids that might be critical for pathogen activity.

View Article and Find Full Text PDF

The Chromobacterium violaceum ATCC 12472 genome was sequenced by The Brazilian National Genome Project Consortium. Previous annotation reported the presence of cellulose biosynthesis genes in that genome. Analysis of these genes showed that, as observed in other bacteria, they are organized in two operons.

View Article and Find Full Text PDF