Background: Itching is considered to be a subjective symptom of the activation of neurosensory structures by different signal molecules and trigger factors. The signaling cascades responsible for it are closely linked to inflammatory processes. This explains why itching also occurs in many inflammatory diseases.
View Article and Find Full Text PDFDetails of the extraction and purification procedure can have a profound impact on the composition of plant-derived extracts, and thus on their efficacy and safety. So far, studies with head-to-head comparison of the pharmacology of extracts rendered by different procedures have been rare. The objective of this study was to explore whether leaf extract medications of various sources protect against amyloid beta toxicity on primary mouse cortex neurons growing on microelectrode arrays, and whether the effects differ between different extracts.
View Article and Find Full Text PDFNiemann-Pick Type C1 (NPC1) disease is an autosomal recessive neurodegenerative disease characterized by an excessive accumulation of unesterified cholesterol in late endosomes/lysosomes. Patients with NPC1 disease show a series of symptoms in neuropathology, including a gradually increased loss of motor control and seizures. However, mechanism of the neurological manifestations in NPC1 disease is not fully understood yet.
View Article and Find Full Text PDFIn recent years, various stimuli were identified capable of enhancing neurogenesis, a process which is dysfunctional in the senescent brain and in neurodegenerative and certain neuropsychiatric diseases. Applications of electromagnetic fields to brain tissue have been shown to affect cellular properties and their importance for therapies in medicine is recognized. In this study, differentiating murine cortical networks on multiwell microelectrode arrays were repeatedly exposed to an extremely low-electromagnetic field (ELEMF) with alternating 10 and 16 Hz frequencies piggy backed onto a 150 MHz carrier frequency.
View Article and Find Full Text PDFThe present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity.
View Article and Find Full Text PDFThe difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices.
View Article and Find Full Text PDF