Publications by authors named "Luise L Chaves"

The review highlights significant advances in delivery systems, with an emphasis on the use of cashew gum (CG), a natural polysaccharide extracted from Anacardium occidentale L., recognized for its remarkable biodegradability and versatility. CG has a wide range of applications spanning sectors such as food, pharmaceuticals, agriculture, and biotechnology.

View Article and Find Full Text PDF
Article Synopsis
  • - Natural polysaccharides (PSs) have gained attention for their impressive biological properties and potential applications in medicine and food, particularly for treating gastrointestinal diseases.
  • - The study highlights how PSs function by reducing inflammation, regulating immune responses, and promoting intestinal mucosa healing, all linked to their chemical makeup and action mechanisms.
  • - Additionally, the review discusses PSs' role in enhancing gut health by supporting beneficial bacteria and producing short-chain fatty acids, while also addressing challenges in their processing and potential solutions.
View Article and Find Full Text PDF

This study aimed to assess the formation of nevirapine (NVP) co-amorphs systems (CAM) with different co-formers (lamivudine-3TC, citric acid-CAc, and urea) through combined screening techniques as computational and thermal studies, solubility studies; in addition to develop and characterize suitable NVP-CAM. NVP-CAM were obtained using the quench-cooling method, and characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and polarized light microscopy (PLM), in addition to in vitro dissolution in pH 6.8.

View Article and Find Full Text PDF

The insertion of hydrophobic and hydrophilic chains in the chitosan molecule can improve its antibacterial activity, expanding its range of application in several areas of medical-pharmaceutical sciences. Thus, this work aimed to increase the antibacterial activity of chitosan through the modification reaction with phthalic anhydride (QF) and subsequent reaction with ethylenediamine (QFE). The chitosan and derivatives obtained were characterized by elemental analysis, C Nuclear Magnetic Resonance (C NMR), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TG), where it was possible to prove the chemical modification.

View Article and Find Full Text PDF

Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer.

View Article and Find Full Text PDF

Enoxaparin is an effective biological molecule for prevention and treatment of coagulation disorders. However, it is poorly absorbed in the gastrointestinal tract. In this study, we developed an Eudragit® L100 coated chitosan core shell nanoparticles for enoxaparin oral delivery (Eud/CS/Enox NPs) through a completely eco-friendly method without employing any high-energy homogenizer technique and any organic solvents.

View Article and Find Full Text PDF
Article Synopsis
  • * The new phthalate angico gum (PAG) was thoroughly analyzed and found to be a semi-crystalline material, suitable for drug delivery.
  • * We developed optimized nevirapine (NVP)-loaded nanoparticles that showed promising characteristics, indicating that PAG could be a valuable biopolymer for delivering drugs effectively.
View Article and Find Full Text PDF

Introduction: Many drugs used to combat schistosomiasis, Chagas disease, and leishmaniasis (SCL) have clinical limitations such as: high toxicity to the liver, kidneys and spleen; reproductive, gastrointestinal, and heart disorders; teratogenicity. In this sense, drug delivery systems (DDSs) have been described in the literature as a viable option for overcoming the limitations of these drugs. An analysis of the level of development (TRL) of patents can help in determine the steps that must be taken for promising technologies to reach the market.

View Article and Find Full Text PDF

Chemical modification of polysaccharides is an important approach for their transformation into customized matrices that suit different applications. Microwave irradiation (MW) has been used to catalyze chemical reactions. This study developed a method of MW-initiated synthesis for the production of phthalated cashew gum (Phat-CG).

View Article and Find Full Text PDF

Leprosy disease remains an important public health issue as it is still endemic in several countries. , the causative agent of leprosy, presents tropism for cells of the reticuloendothelial and peripheral nervous system. Current multidrug therapy consists of clofazimine, dapsone and rifampicin.

View Article and Find Full Text PDF

This work proposes the development and characterization of solid lipid nanoparticles (SLNs) loaded with rifampicin (RIF) aiming to enhance mucoadhesion of the SLNs and consequently internalization by the alveolar macrophages (AMs). The lipid nanoparticles (NPs) were characterized and the results showed that the NPs obtained present a spherical or a starry shape with diameter around 250-500 nm, a monodisperse population, with zeta potential between -31 mV for uncoated SLNs and +33 mV for coated SLNs. The drug EE was approximately 90 % and the loading capacity (LC) 4.

View Article and Find Full Text PDF

This work aims to optimize and assess the potential use of lipid nanoparticles, namely nanostructured lipid carriers (NLCs), as drug delivery systems of rifapentine (RPT) for the treatment of tuberculosis (TB). A Box-Behnken design was used to increase drug encapsulation efficiency (EE) and loading capacity (LC) of RPT-loaded NLCs. The optimized nanoparticles were fully characterized, and their effect on cell viability was assessed.

View Article and Find Full Text PDF

Dapsone (DAP) is a bactericidal agent used in the treatment of leprosy, caused by Mycobacterium leprae. Despite its therapeutic potential, DAP has low solubility, which results in allow therapeutic index and a high microbial resistance. Recently, new approaches were used to increase the DAP solubility.

View Article and Find Full Text PDF

The low bioavailability and nonspecific distribution of dapsone and clofazimine, commonly applied in combination for the treatment of leprosy, can produce toxic effects. Nanotechnological approaches enhance the delivery of these drugs. Therefore, a high-performance liquid chromatography method was developed for the simultaneous determination of dapsone and clofazimine loaded in nanoformulations for quality control purposes.

View Article and Find Full Text PDF

The aim of this work was to assess the feasibility of drug nanosystems combination for oral therapy of multibacillary leprosy. The anti-leprotic drugs dapsone (DAP) and clofazimine (CLZ) were incorporated within polymeric nanosystems and studied per se and in combination. DAP was loaded in Eudragit L100 nanoparticles (NPs-DAP) while CLZ was loaded in (poly(lactic-co-glycolic acid) (NPs-CLZ).

View Article and Find Full Text PDF

Olanzapine (OLZ), is used in the treatment of bipolar disorder and schizophrenia, diseases that present oxidative stress in their physiopathology. It has low aqueous solubility, which may lead to low oral bioavailability. The search of new drug delivery systems (DDSs) that may increase dissolution rate of OLZ, associated with the investigation of the antioxidant potential of the loaded-systems become of major importance to understand improvement in bipolar disorder and schizophrenia therapy.

View Article and Find Full Text PDF

The aim of this work was to develop solid lipid nanoparticles (SLNs) loaded with clofazimine (CLZ) (SLNs-CLZ) to overcome its intrinsic toxicity and low water solubility, for oral drug delivery. A Box-Behnken design was constructed to unravel the relations between the independent variables in the selected responses. The optimized SLNs-CLZ exhibited the following properties: particle size 230 nm, zeta potential of -34.

View Article and Find Full Text PDF

Tuberculosis (TB) is still a devastating disease and more people have died of TB than any other infectious diseases throughout the history. The current therapy consists of a multidrug combination in a long-term treatment, being associated with the appearance of several adverse effects. Thus, solid lipid nanoparticles (SLNs) were developed using mannose as a lectin receptor ligand conjugate for macrophage targeting and to increase the therapeutic index of rifampicin (RIF).

View Article and Find Full Text PDF

Taking into consideration the potential mucoadhesion properties of systems in lung delivery, this paper describes the preparation and characterization of chitosan-coated solid lipid nanoparticles (C-SLNs) loaded with rifampicin (RIF) as anti-tuberculosis (anti-TB) drug. The process of development and characterization of the NPs in terms of size, surface charge, encapsulation efficiency (EE), morphology, in vitro drug release, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), in vitro assessment of mucoadhesive property, cell viability and permeability studies are documented. Results showed that the SLNs had a smooth spherical shape with a size of ca.

View Article and Find Full Text PDF

The use of polymeric nanoparticles as delivery systems is a promising tool to overcome drawbacks related to low aqueous solubility of drugs, which limit their in vivo bioavailability. The aim of this study was to decrease clofazimine (CLZ) toxicity using experimental design to formulate CLZ loaded in PLGA nanoparticles (NPs-CLZ) through a Plackett-Burman design (PBD). A screening PBD was constructed with twelve formulations involving six variables among process and formulation parameters and the selected responses were particle size, polydispersity index (PDI), association efficiency (AE) and drug loading (DL).

View Article and Find Full Text PDF

The well-known pleiotropic health benefits of green tea are mainly attributed to epigallocatechin-3-gallate (EGCG), a polyphenolic compound from the group of catechins. EGCG's poor stability and intestinal permeability, however, can strongly impair its biological activities. In this work, EGCG-loaded nanostructured lipid carriers (NLC) functionalized with folic acid were optimized through a Box-Behnken design intended to provide an enhanced oral absorption and increased bioavailability of EGCG.

View Article and Find Full Text PDF

Aim: To optimize the production of pH-sensitive dapsone (DAP) nanoparticles based on Eugradit L100 (NPs-EL100-DAP) for oral delivery.

Materials & Methods: NPs-EL100-DAP were optimized using a Plackett-Burman design and a Box-Behnken design. The physicochemical properties of the obtained nanoparticles were monitored by microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, differential scanning calorimetry, in vitro release assays, and examined for cytotoxicity and permeation across intestinal barrier.

View Article and Find Full Text PDF

The aim of the present work was to develop and optimize surface-functionalized solid lipid nanoparticles (SLNs) for improvement of the therapeutic index of dapsone (DAP), with the application of a design of experiments. The formulation was designed to target intestinal microfold (M-cells) as a strategy to increase internalization of the drug by the infected macrophages. DAP-loaded SLNs and mannosylated SLNs (M-SLNs) were successfully developed by hot ultrasonication method employing a three-level, three-factor Box-Behnken design, after the preformulation study was carried out with different lipids.

View Article and Find Full Text PDF

This work aimed to design dapsone (DAP) amorphous Polymeric Dispersions (PD) using design of experiments (DoE) and response surface methodology (RSM) as optimization tools in order to tailor the biopharmaceutical properties toward its oral delivery. A two-factor, three-level (3(2)) statistical design was implemented to study the influence of input variables (amount of PVP K30 and Pluronic F68) on the equilibrium solubility of DAP of the physical mixture (PM), kneaded (KN) and freeze dried (FD) PDs. Through the analysis, it was found that equilibrium solubility of DAP was improved with increasing of PVP K30, mainly for FD PDs, but decreased with increasing Pluronic F68 concentration.

View Article and Find Full Text PDF

The aim of this study was to optimize and assess the potential of nanostructured lipid carriers (NLC), prepared by the hot ultrasonication method, as carrier for methotrexate (MTX), highlighting the application of factorial design. Preliminary screening drug/lipid solubility, allowed us to select Witepsol(®) E85 as the solid lipid and Mygliol(®) 812 as liquid lipid for the NLC loaded with MTX. Then, a 3-level, 3-factor Box-Behnken design and validated by ANOVA analysis; the correspondence between the predicted values and those measured experimentally confirmed the robustness of the design.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0fsfccglihhjnbd0aptp4k28dkqojar7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once