Fibrosis and loss of functional capillary surface area may contribute to renal tissue hypoxia in a range of kidney diseases. However, there is limited quantitative information on the impact of kidney disease on the barriers to oxygen diffusion from cortical peritubular capillaries (PTCs) to kidney epithelial tubules. Here, we used stereological methods to quantify changes in total cortical PTC length and surface area, PTC length and surface densities, and diffusion distances between PTCs and kidney tubules in adenine-induced kidney injury.
View Article and Find Full Text PDFCorticosteroid therapy, often in combination with inhibition of the renin-angiotensin system, is first-line therapy for primary focal and segmental glomerulosclerosis (FSGS) with nephrotic-range proteinuria. However, the response to treatment is variable, and therefore new approaches to indicate the response to therapy are required. Podocyte depletion is a hallmark of early FSGS, and here we investigated whether podocyte number, density and/or size in diagnostic biopsies and/or the degree of glomerulosclerosis could indicate the clinical response to first-line therapy.
View Article and Find Full Text PDFBackground: Low nephron number has a direct impact on the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood.
Methods: We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development.
Podocytes are terminally differentiated epithelial cells in glomeruli. Podocyte injury and loss are features of many diseases leading to chronic kidney disease (CKD). The developmental origins of health and disease hypothesis propose an adverse intrauterine environment can lead to CKD later in life, especially when a second postnatal challenge is experienced.
View Article and Find Full Text PDFMaternal protein restriction is often associated with structural and functional sequelae in offspring, particularly affecting growth and renal-cardiovascular function. However, there is little understanding as to whether hypertension and kidney disease occur because of a primary nephron deficit or whether controlling postnatal growth can result in normal renal-cardiovascular phenotypes. To investigate this, female Sprague-Dawley rats were fed either a low-protein (LP, 8.
View Article and Find Full Text PDFPodocyte loss and resultant nephron loss are common processes in the development of glomerulosclerosis and chronic kidney disease. While the cortical distribution of glomerulosclerosis is known to be non-uniform, the relationship between the numbers of non-sclerotic glomeruli (NSG), podometrics and zonal differences in podometrics remain incompletely understood. To help define this, we studied autopsy kidneys from 50 adults with median age 68 years and median eGFR 73.
View Article and Find Full Text PDFProgressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2021
Low birth weight is a risk factor for chronic kidney disease, whereas adult podocyte depletion is a key event in the pathogenesis of glomerulosclerosis. However, whether low birth weight due to poor maternal nutrition is associated with low podocyte endowment and glomerulosclerosis in later life is not known. Female Sprague-Dawley rats were fed a normal-protein diet (NPD; 20%) or low-protein diet (LPD; 8%), to induce low birth weight, from 3 wk before mating until (PN21), when kidneys from some male offspring were taken for quantitation of podocyte number and density in whole glomeruli using immunolabeling, tissue clearing, and confocal microscopy.
View Article and Find Full Text PDFBackground: Podocyte depletion, low nephron number, aging, and hypertension are associated with glomerulosclerosis and CKD. However, the relationship between podometrics and nephron number has not previously been examined.
Methods: To investigate podometrics and nephron number in healthy Japanese individuals, a population characterized by a relatively low nephron number, we immunostained single paraffin sections from 30 Japanese living-kidney donors (median age, 57 years) with podocyte-specific markers and analyzed images obtained with confocal microscopy.
A maternal low protein (LP) diet in rodents often results in low nephron endowment and renal pathophysiology in adult life, with outcomes often differing between male and female offspring. Precisely how a maternal LP diet results in low nephron endowment is unknown. We conducted morphological and molecular studies of branching morphogenesis and nephrogenesis to identify mechanisms and timepoints that might give rise to low nephron endowment.
View Article and Find Full Text PDFEndocrinol Diabetes Metab
October 2019
Aims: The worldwide prevalence of gestational diabetes mellitus (GDM) is increasing. Studies in rodent models indicate that hyperglycaemia during pregnancy alters kidney development, yet few studies have examined if this is so in humans. The objective of this study was to evaluate the association of treated GDM with foetal kidney size.
View Article and Find Full Text PDFThe cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles.
View Article and Find Full Text PDFGlomerular filtration rate (GFR) declines with age such that the prevalence of chronic kidney disease is much higher in the elderly. SIRT1 is the leading member of the sirtuin family of NAD -dependent lysine deacetylases that mediate the health span extending properties of caloric restriction. Since reduction in energy intake has also been shown to decrease age-related kidney disease in rodents, we hypothesized that a diminution in SIRT1 activity would accelerate the GFR decline and structural injury with age.
View Article and Find Full Text PDFA normal endowment of nephrons in the mammalian kidney requires a balance of nephron progenitor self-renewal and differentiation throughout development. Here, we provide evidence for a novel action of ureteric branch tip-derived Wnt11 in progenitor cell organization and interactions within the nephrogenic niche, ultimately determining nephron endowment. In mutants, nephron progenitors dispersed from their restricted niche, intermixing with interstitial progenitors.
View Article and Find Full Text PDFThe ovarian reserve of primordial follicle oocytes is formed during in utero development and represents the entire supply of oocytes available to sustain female fertility. Maternal undernutrition during pregnancy and lactation diminishes offspring ovarian reserve in rats. In mice, maternal oocyte maturation is also susceptible to undernutrition, causing impaired offspring cardiovascular function.
View Article and Find Full Text PDFIt has been suggested that low nephron number contributes to glomerular hypertension and hyperperfusion injury in progressive chronic kidney disease (CKD). The incidence of CKD in Japan is among the highest in the world, but the reasons remain unclear. We estimated total nephron (glomerular) number (NglomTOTAL) as well as numbers of nonsclerosed (NglomNSG) and globally sclerosed glomeruli (NglomGSG), and the mean volume of nonsclerosed glomeruli (VglomNSG) in Japanese normotensive, hypertensive, and CKD subjects and investigated associations between these parameters and estimated glomerular filtration rate (eGFR).
View Article and Find Full Text PDFRecently, new methods for assessing renal function in conscious mice (transcutaneous assessment) and for counting and sizing all glomeruli in whole kidneys (MRI) have been described. In the present study, these methods were used to assess renal structure and function in aging mice, and in mice born with a congenital low-nephron endowment. Age-related nephron loss was analyzed in adult C57BL/6 mice (10-50 wk of age), and congenital nephron deficit was assessed in glial cell line-derived neurotrophic factor heterozygous (GDNF HET)-null mutant mice.
View Article and Find Full Text PDFBackground: Acute kidney injury affects ~70% of asphyxiated newborns, and increases their risk of developing chronic kidney disease later in life. Acute kidney injury is driven by renal oxygen deprivation during asphyxia, thus we hypothesized that creatine administered antenatally would protect the kidney from the long-term effects of birth asphyxia.
Methods: Pregnant spiny mice were fed standard chow or chow supplemented with 5% creatine from 20-d gestation (midgestation).
Background: Animal studies report a nephron deficit in offspring exposed to maternal diabetes, yet are limited to models of severe hyperglycaemia which do not reflect the typical clinical condition and which are associated with foetal growth restriction that may confound nephron endowment. We aimed to assess renal morphology and function in offspring of leptin receptor deficient mice (Lepr /+) and hypothesized that exposure to impaired maternal glucose tolerance (IGT) would be detrimental to the developing kidney.
Methods: Nephron endowment was assessed in offspring of C57BKS/J Lepr /+ and +/+ mice at embryonic day (E)18 and postnatal day (PN)21 using design-based stereology.
Increasing consumption of a high fat 'Western' diet has led to a growing number of pregnancies complicated by maternal obesity. Maternal overnutrition and obesity have health implications for offspring, yet little is known about their effects on offspring kidney development and renal function. Female C57Bl6 mice were fed a high fat diet (HFD, 21% fat) or matched normal fat diet (NFD, 6% fat) for 6 weeks prior to pregnancy and throughout gestation and lactation.
View Article and Find Full Text PDFPodocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
April 2016
Podocyte depletion plays a major role in the development and progression of glomerulosclerosis. Many kidney diseases are more common in older age and often coexist with hypertension. We hypothesized that podocyte depletion develops in association with older age and is exacerbated by hypertension.
View Article and Find Full Text PDFA method to measure total glomerular number (Nglom) in whole mouse kidneys using MRI is presented. The method relies on efficient acquisition times. A 9.
View Article and Find Full Text PDFThe identification of small structures (blobs) from medical images to quantify clinically relevant features, such as size and shape, is important in many medical applications. One particular application explored here is the automated detection of kidney glomeruli after targeted contrast enhancement and magnetic resonance imaging. We propose a computationally efficient algorithm, termed the Hessian-based Difference of Gaussians (HDoG), to segment small blobs (e.
View Article and Find Full Text PDF