Chondroitin obtained through biotechnological processes (BC) shares similarities with both chondroitin sulfate (CS), due to the dimeric repetitive unit, and hyaluronic acid (HA), as it is unsulfated. In the framework of this experimental research, formulations containing BC with an average molecular size of about 35 KDa and high molecular weight HA (HHA) were characterized with respect to their rheological behavior, stability to enzymatic hydrolysis and they were evaluated in different skin damage models. The rheological characterization of the HHA/BC formulation revealed a G' of 92 ± 3 Pa and a G″ of 116 ± 5 Pa and supported an easy injectability even at a concentration of 40 mg/mL.
View Article and Find Full Text PDFPurpose: The purpose of this in vitro study was to assess the potential benefits of eye drops based on hybrid cooperative complexes (HCCs) obtained from high and low molecular weight hyaluronic acid (HA).
Methods: Rheological measurements were performed to adjust the HCC concentration toward optimal resistance to drainage from the ocular surface. The viscosity and mucoadhesion profiles of the optimized preparation were derived.
Olive oil boasts numerous health benefits due to the high content of the monounsaturated fatty acid (MUFA) and functional bioactives including tocopherols, carotenoids, phospholipids, and polyphenolics with multiple biological activities. Polyphenolic components present antioxidant properties by scavenging free radicals and eliminating metabolic byproducts of metabolism. The objective of this research project was to recover the biologically active components rich in polyphenols, which include treatment of olive oil mills wastewater, and, at the same time, to remove the pollutant waste component resulting from the olive oil manufacturing processes.
View Article and Find Full Text PDFChondroitin sulfate (CS) sulfation-dependently binds transforming growth factor-β1 (TGF-β1) and chronic wounds often accompany with epidermal hyperproliferation due to downregulated TGF-β signaling. However, the impact of CS on keratinocytes is unknown. Especially biotechnological-chemical strategies are promising to replace animal-derived CS.
View Article and Find Full Text PDFBackground/aims: Adipose-derived Stem Cells (ASCs) are used in Regenerative Medicine, including fat grafting, recovery from local tissue ischemia and scar remodeling. The aim of this study was to evaluate hyaluronan based gel effects on ASCs differentiation and proliferation.
Methods: Comparative analyses using high (H) and low (L) molecular weight hyaluronans (HA), hyaluronan hybrid cooperative complexes (HCCs), and high and medium cross-linked hyaluronan based dermal fillers were performed.
Nowadays there is a great interest in investigating the effect of particular hyaluronan fragments in the biomedical field and in cosmeceutical applications. Literature has reported that very low molecular weight HA (Mw<5kDa) has an inflammatory effect, whilst HA ranging from 15 to 250 has shown controversial effects. This work aims to give better elucidation on the correlation between the different sized HA fragments and their biological functions.
View Article and Find Full Text PDFHyaluronic Acid (HA)-based dermal formulations have rapidly gained a large consensus in aesthetic medicine and dermatology. HA, highly expressed in the Extracellular Matrix (ECM), acts as an activator of biological cascades, stimulating cell migration and proliferation, and operating as a regulator of the skin immune surveillance, through specific interactions with its receptors. HA may be used in topical formulations, as dermal inducer, for wound healing.
View Article and Find Full Text PDFHyaluronan (HA) is frequently incorporated in eye drops to extend the pre-corneal residence time, due to its viscosifying and mucoadhesive properties. Hydrodynamic and rheological evaluations of commercial products are first accomplished revealing molecular weights varying from about 360 to about 1200kDa and viscosity values in the range 3.7-24.
View Article and Find Full Text PDF