Publications by authors named "Luisa Sonntag"

Research on nano- and micromotors has evolved into a frequently cited research area with innovative technology envisioned for one of current humanities' most deadly problems: cancer. The development of cancer targeting drug delivery strategies involving nano-and micromotors has been a vibrant field of study over the past few years. This review aims at categorizing recent significant results, classifying them according to the employed propulsion mechanisms starting from chemically driven micromotors, to field driven and biohybrid approaches.

View Article and Find Full Text PDF

All inorganic lead halide perovskite nanocrystals (PNCs) typically suffer from poor stability against moisture and UV radiation as well as degradation during thermal treatment. The stability of PNCs can be significantly enhanced through polymer encapsulation, often accompanied by a decrease of photoluminescence quantum yield (PLQY) due to the loss of highly dynamic oleylamine/oleic acid (OLA/OA) ligands. Herein, we propose a solution for this problem by utilizing partially hydrolyzed poly(methyl methacrylate) (h-PMMA) and highly branched poly(ethylenimine) (b-PEI) as double ligands stabilizing the PNCs already during the mechanochemical synthesis (grinding).

View Article and Find Full Text PDF

In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor.

View Article and Find Full Text PDF

We investigate the influence of the average molar mass (Mw) of the capping agent poly(N-vinylpyrrolidone) (PVP) on the conductivity of a silver nanowire (AgNW) network. During the polyol process, the chain length of PVP is known to influence the AgNW diameters and lengths. By altering the reaction temperature and time and using PVP of different chain lengths, we synthesized AgNWs with varying diameters, lengths and PVP coverage.

View Article and Find Full Text PDF

A new class of multimetallic hierarchical aerogels composed entirely of interconnected Ni-Pd Pt nano-building-blocks with in situ engineered morphologies and compositions is demonstrated. The underlying mechanism of the galvanic shape-engineering is elucidated in terms of nanowelding of intermediate nanoparticles. The hierarchical aerogels integrate two levels of porous structures, leading to improved electrocatalysis performance.

View Article and Find Full Text PDF

We investigate the degradation of organic solar cells based on an oligothiophene (DCV5T-Me) small molecule donor and the acceptor C60. Two different flexible, transparent bottom electrode types are employed: a transparent metal electrode (TME) and silver nanowires (AgNWs). They exhibit high optical transparency up to 86% and a sheet resistance as low as 12Ω/□.

View Article and Find Full Text PDF

We report an efficient approach to assemble a variety of electrostatically stabilized all-inorganic semiconductor nanocrystals (NCs) by their linking with appropriate ions into multibranched gel networks. These all-inorganic non-ordered 3D assemblies benefit from strong interparticle coupling, which facilitates charge transport between the NCs with diverse morphologies, compositions, sizes, and functional capping ligands. Moreover, the resulting dry gels (aerogels) are highly porous monolithic structures, which preserve the quantum confinement of their building blocks.

View Article and Find Full Text PDF