Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.
View Article and Find Full Text PDFSpent coffee grounds (SCGs) are a promising substrate that can be valorized by biotechnological processes, such as for short-chain organic acid (SCOA) production, but their complex structure implies the application of a pretreatment step to increase their biodegradability. Physicochemical pretreatments are widely studied but have multiple drawbacks. An alternative is the application of biological pretreatments that include using fungi and that naturally can degrade complex substrates such as SCGs.
View Article and Find Full Text PDFAcidogenic fermentation (AF) is often applied to wastes to produce short-chain organic acids (SCOAs)-molecules with applications in many industries. Spent coffee grounds (SCGs) are a residue from the coffee industry that is rich in carbohydrates, having the potential to be valorized by this process. However, given the recalcitrant nature of this waste, the addition of a pretreatment step can significantly improve AF.
View Article and Find Full Text PDFBiopolymers are very favorable materials produced by living organisms, with interesting properties such as biodegradability, renewability, and biocompatibility. Biopolymers have been recently considered to compete with fossil-based polymeric materials, which rase several environmental concerns. Biobased plastics are receiving growing interest for many applications including electronics, medical devices, food packaging, and energy.
View Article and Find Full Text PDFFluorescence in situ hybridization (FISH) enables the detection and enumeration of microorganisms in a diversity of samples. Short-length oligonucleotide DNA probes complementary to 16S or 23S rRNA sequences are generally used to target different phylogenetic levels. The protocol for the application of FISH to aggregated or suspended cells in mixed microbial communities is described in this chapter, with a special emphasis on environmental samples.
View Article and Find Full Text PDFCadmium (Cd)-contaminated waterbodies are a worldwide concern for the environment, impacting human health. To address the need for efficient, sustainable and cost-effective remediation measures, we developed innovative Cd bioremediation agents by engineering Escherichia coli to assemble poly(3-hydroxybutyric acid) (PHB) beads densely coated with Cd-binding peptides. This was accomplished by translational fusion of Cd-binding peptides to the N- or C-terminus of a PHB synthase that catalyzes PHB synthesis and mediates assembly of Cd2 or Cd1 coated PHB beads, respectively.
View Article and Find Full Text PDFHydrocarbon bioremediation in anoxic sediment layers is still challenging not only because it involves metabolic pathways with lower energy yields but also because the production of biosurfactants that contribute to the dispersion of the pollutant is limited by oxygen availability. This work aims at screening populations of culturable hydrocarbonoclastic and biosurfactant (BSF) producing bacteria from deep sub-seafloor sediments (mud volcanos from Gulf of Cadiz) and estuarine sub-surface sediments (Ria de Aveiro) for strains with potential to operate in sub-oxic conditions. Isolates were retrieved from anaerobic selective cultures in which crude oil was provided as sole carbon source and different supplements were provided as electron acceptors.
View Article and Find Full Text PDFPulp and paper factories produce several residues that can be explored and valorized through polyhydroxyalkanoate (PHA) production via a three-step process. The objective of this work was focused on the selection step. Acidified hardwood spent sulfite liquor (HSSL), a fermented waste stream from a pulp and paper factory, was used to select a mixed microbial culture (MMC) in a sequencing batch reactor (SBR) operated for 156 days under different operational conditions.
View Article and Find Full Text PDFPseudomonas KT2440, one of the best characterized pseudomonads, is a metabolically versatile producer of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) that serves as a model bacterium for molecular studies. The synthesis of mcl-PHAs is of great interest due to their commercial potential. Carbon and phosphorus are the essential nutrients for growth and their limitation can trigger mcl-PHAs' production in microorganisms.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
August 2017
Mixed microbial cultures (MMC) and waste/surplus substrates, as hardwood spent sulfite liquor, are being used to decrease polyhydroxyalkanoates' (PHA) production costs. The process involves two or three steps, being the selection step a crucial one. For the industrial implementation of this strategy, reactor stability in terms of both performance and microbial community presence has to be considered.
View Article and Find Full Text PDFEnrichment of mixed microbial cultures (MMCs) in polyhydroxyalkanoate (PHA)-storing microorganisms must take place to develop a successful PHA production process. Moreover, throughout the operational period of a MMC system, the population needs to be checked in order to understand the changes in the performance that eventually occurred. For these reasons, it is necessary to monitor the population evolution, in order to identify the different groups of microorganisms and relate them with the storage capacity and kinetics of the MMC.
View Article and Find Full Text PDFHaloferax mediterranei was cultivated in highly saline medium using cheese whey as the substrate for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV). Acid hydrolysis provided a simple inexpensive method to obtain a cheese whey hydrolysate that was used for cultivation of H. mediterranei.
View Article and Find Full Text PDFBackground: Hardwood spent sulfite liquor (HSSL) is a by-product of acid sulfite pulping process that is rich in xylose, a monosaccharide that can be fermented to ethanol by Scheffersomyces stipitis. However, HSSL also contains acetic acid and lignosulfonates that are inhibitory compounds of yeast growth. The main objective of this study was the use of an evolutionary engineering strategy to obtain variants of S.
View Article and Find Full Text PDFBioresour Technol
April 2014
In this work, hardwood spent sulfite liquor (HSSL), a complex feedstock originating from the pulp industry, was tested for the first time as a substrate for polyhydroxyalkanoate (PHA) production by a mixed microbial culture (MMC) under aerobic dynamic feeding (ADF) conditions. A sequencing batch reactor (SBR) fed with HSSL was operated for 67days and the selected MMC reached a maximum PHA content of 67.6%.
View Article and Find Full Text PDFThe fermentation of reducing sugars from hardwood (eucalypt) spent sulphite liquor (HSSL) into ethanol by Pichia (Scheffersomyces) stipitis is hindered by concomitant inhibitors of microbial metabolism. The conditions for the HSSL biological treatment step by Paecilomyces variotii were evaluated and optimised. Two different strategies of reactor operation were compared using single batch (B) and sequential batch reactor (SBR).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
September 2011
Aqueous two-phase systems (ATPS) are considered as efficient downstream processing techniques in the production and purification of enzymes, since they can be considered harmless to biomolecules due to their high water content and due to the possibility of maintaining a neutral pH value in the medium. A recent type of alternative ATPS is based on hydrophilic ionic liquids (ILs) and salting-out inducing salts. The aim of this work was to study the lipase (Candida antarctica lipase B - CaLB) partitioning in several ATPS composed of ionic liquids (ILs) and inorganic salts, and to identify the best IL for the enzyme purification.
View Article and Find Full Text PDFBacterial cellulose (BC), a very peculiar form of cellulose, is gaining considerable importance due to its unique properties. In this study, several residues, from agro-forestry industries, namely grape skins aqueous extract, cheese whey, crude glycerol and sulfite pulping liquor were evaluated as economic carbon and nutrient sources for the production of BC. The most relevant BC amounts attained with the residues from the wine and pulp industries were 0.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2008
Production of polyhydroxyalkanoates (PHA) by mixed cultures has been widely studied in the last decade. Storage of PHA by mixed microbial cultures occurs under transient conditions of carbon or oxygen availability, known respectively as aerobic dynamic feeding and anaerobic/aerobic process. In these processes, PHA-accumulating organisms, which are quite diverse in terms of phenotype, are selected by the dynamic operating conditions imposed to the reactor.
View Article and Find Full Text PDFBackground: This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA) copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio.
View Article and Find Full Text PDFThe identity of polyhydroxyalkanoates (PHA) storing bacteria selected under aerobic dynamic feeding conditions, using propionate as carbon source (reactor P), was determined by applying reverse transcriptase-polymerase chain reaction (RT-PCR) on micromanipulated cells and confirmed by fluorescence in situ hybridisation (FISH). Four genera, Amaricoccus, Azoarcus, Thauera and Paraccoccus were detected, the latter only rarely present. All the biomass was involved in PHA storage as shown by Nile Blue staining.
View Article and Find Full Text PDFThe characterization of polyhydroxyalkanoates (PHA) produced by mixed cultures is fundamental for foreseeing the possible final applications of the polymer. In this study PHA produced under aerobic dynamic feeding (ADF) conditions are characterized. The PHA produced shows a stable average molecular weight ([symbol: see text]) in the range (1.
View Article and Find Full Text PDFNumerous bacteria have been found to exhibit the capacity for intracellular polyhydroxyalkanoates (PHA) accumulation. Current methods for PHA production at the industrial scale are based on their synthesis from microbial isolates in either their wild form or by recombinant strains. High production costs are associated with these methods; thus, attempts have been made to develop more cost-effective processes.
View Article and Find Full Text PDFThe production of polyhydroxyalkanoates from acetate and propionate by two mixed cultures well adapted to each of these substrates was evaluated. Sludge fed with acetate (A), produced a homopolymer of hydroxybutyrate (HB), whereas sludge fed with propionate (P) produced a copolymer of HB and HV (hydoxyvalerate). Switching the substrate feeds, propionate to sludge A and acetate to culture P, a terpolymer of HB, HV and hydroxymethylvalerate (HMV) was obtained with culture A and a copolymer of P(HB/HV) by sludge P.
View Article and Find Full Text PDF