Eukaryotic cells possess surveillance mechanisms that detect and degrade defective transcripts. Aberrant transcripts include mRNAs with a premature termination codon (PTC), targeted by the nonsense-mediated decay (NMD) pathway, and mRNAs lacking a termination codon, targeted by the nonstop decay (NSD) pathway. The eukaryotic exosome, a ribonucleolytic complex, plays a crucial role in mRNA processing and turnover through its catalytic subunits PM/Scl100 (Rrp6 in yeast), DIS3 (Rrp44 in yeast), and DIS3L1.
View Article and Find Full Text PDFDIS3L2 degrades different types of RNAs in an exosome-independent manner including mRNAs and several types of non-coding RNAs. DIS3L2-mediated degradation is preceded by the addition of nontemplated uridines at the 3'end of its targets by the terminal uridylyl transferases 4 and 7. Most of the literature that concerns DIS3L2 characterizes its involvement in several RNA degradation pathways, however, there is some evidence that its dysregulated activity may contribute to cancer development.
View Article and Find Full Text PDFis the most commonly mutated gene in human cancers. Two fundamental reasons for this are its long protein isoforms protect from cancer, while its shorter C-terminal isoforms can support cancer and metastasis. Previously, we have shown that the Δ160p53 protein isoform enhances survival and the invasive character of cancer cells.
View Article and Find Full Text PDFEukaryotic gene expression involves several interlinked steps, in which messenger RNAs (mRNAs), which code for proteins, are the key intermediates [...
View Article and Find Full Text PDFMany conditions can benefit from RNA-based therapies, namely, those targeting internal ribosome entry sites (IRESs) and their regulatory proteins, the IRES -acting factors (ITAFs). IRES-mediated translation is an alternative mechanism of translation initiation, known for maintaining protein synthesis when canonical translation is impaired. During a stress response, it contributes to cell reprogramming and adaptation to the new environment.
View Article and Find Full Text PDFAutism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental condition with unclear etiology. Many genes have been associated with ASD risk, but the underlying mechanisms are still poorly understood. An important post-transcriptional regulatory mechanism that plays an essential role during neurodevelopment, the Nonsense-Mediated mRNA Decay (NMD) pathway, may contribute to ASD risk.
View Article and Find Full Text PDFFamilial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism, characterized by increased levels of total and LDL plasma cholesterol, which leads to premature atherosclerosis and coronary heart disease. FH phenotype has considerable genetic heterogeneity and phenotypic variability, depending on LDL receptor activity and lifestyle. To improve diagnosis and patient management, here, we characterized two single nucleotide missense substitutions at Methionine 1 of the human gene (c.
View Article and Find Full Text PDFATP-binding cassette subfamily E member 1 (ABCE1) belongs to the ABC protein family of transporters; however, it does not behave as a drug transporter. Instead, ABCE1 actively participates in different stages of translation and is also associated with oncogenic functions. Ribosome profiling analysis in colorectal cancer cells has revealed a high ribosome occupancy in the human mRNA 5'-leader sequence, indicating the presence of translatable upstream open reading frames (uORFs).
View Article and Find Full Text PDFNonsense-mediated decay (NMD) was first described as a quality-control mechanism that targets and rapidly degrades aberrant mRNAs carrying premature termination codons (PTCs). However, it was found that NMD also degrades a significant number of normal transcripts, thus arising as a mechanism of gene expression regulation. Based on these important functions, NMD regulates several biological processes and is involved in the pathophysiology of a plethora of human genetic diseases, including cancer.
View Article and Find Full Text PDFAbout 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer.
View Article and Find Full Text PDFInt J Mol Sci
December 2020
Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a cellular post-transcriptional process that generates protein isoform diversity. Nonsense-mediated RNA decay (NMD) is an mRNA surveillance pathway that recognizes and selectively degrades transcripts containing premature translation-termination codons (PTCs), thereby preventing the production of truncated proteins. Nevertheless, NMD also fine-tunes the gene expression of physiological mRNAs encoding full-length proteins.
View Article and Find Full Text PDFIn this article, we present supportive data related to the research article "A role for DIS3L2 over natural nonsense-mediated mRNA decay targets in human cells" [1], where interpretation of the data presented here is available. Indeed, here we analyze the impact of the DIS3L2 exoribonuclease over nonsense-mediated mRNA decay (NMD)-targets. Specifically, we present data on: a) the expression of various reporter human β-globin mRNAs, monitored by Northern blot and RT-qPCR, before and after altering DIS3L2 levels in HeLa cells, and b) the gene expression levels of deregulated transcripts generated by re-analyzing publicly available data from UPF1-depleted HeLa cells that were further cross-referenced with a dataset of transcripts upregulated in DIS3L2-depleted cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2019
Adv Exp Med Biol
September 2019
Short upstream open reading frames (uORFs) are cis-acting elements located within the 5'-leader sequence of transcripts and are defined by an initiation codon in-frame with a termination codon located upstream or downstream of its main ORF (mORF) initiation codon. Recent genome-wide ribosome profiling studies have confirmed the widespread presence of uORFs and have shown that many uORFs can initiate with non-AUG codons. uORFs can impact gene expression of the downstream mORF by triggering mRNA decay or by regulating translation.
View Article and Find Full Text PDFNonsense-mediated mRNA decay (NMD) is a well characterized eukaryotic mRNA degradation pathway, responsible for the identification and degradation of transcripts harboring translation termination codons in premature contexts. Transcriptome-wide studies revealed that NMD is not only an mRNA surveillance pathway as initially thought, but is also a post-transcriptional regulatory mechanism of gene expression, as it fine-tunes the transcript levels of many wild-type genes. Hence, NMD contributes to the regulation of many essential biological processes, including pathophysiological mechanisms.
View Article and Find Full Text PDFThe 21st annual meeting of the Portuguese Society of Human Genetics (SPGH), organized by Luísa Romão, Ana Sousa and Rosário Pinto Leite, was held in Caparica, Portugal, from the 16th to the 18th of November 2017. Having entered an era in which personalized medicine is emerging as a paradigm for disease diagnosis, treatment and prevention, the program of this meeting intended to include lectures by leading national and international scientists presenting exceptional findings on the genetics of personalized medicine. Various topics were discussed, including cancer genetics, transcriptome dynamics and novel therapeutics for cancers and rare disorders that are designed to specifically target molecular alterations in individual patients.
View Article and Find Full Text PDFOur results prove that c.1871-14T>G is causative of type I PS deficiency, highlighting the importance of performing mRNA-based studies in order to evaluate variants pathogenicity. We evidence the increased risk of venous thromboembolism associated with this cryptic splice-site variant if present in patients with PS deficiency.
View Article and Find Full Text PDFThe eukaryotic initiation factor 3 (eIF3) is one of the most complex translation initiation factors in mammalian cells, consisting of several subunits (eIF3a to eIF3m). It is crucial in translation initiation and termination, and in ribosomal recycling. Accordingly, deregulated eIF3 expression is associated with different pathological conditions, including cancer.
View Article and Find Full Text PDFThe mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of gene expression. Here, we show that the human transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit.
View Article and Find Full Text PDFInt J Biochem Cell Biol
October 2017
Alternative pre-mRNA splicing (AS) affects gene expression as it generates proteome diversity. Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature translation-termination codons (PTCs), preventing the production of truncated proteins that could result in disease. Several studies have also implicated NMD in the regulation of steady-state levels of physiological mRNAs.
View Article and Find Full Text PDFThe scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment.
View Article and Find Full Text PDFNonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature termination codons (PTCs). The level of sensitivity of a PTC-containing mRNA to NMD is multifactorial. We have previously shown that human β-globin mRNAs carrying PTCs in close proximity to the translation initiation AUG codon escape NMD.
View Article and Find Full Text PDFThe gene encoding human hemojuvelin (HJV) is one of the genes that, when mutated, can cause juvenile hemochromatosis, an early-onset inherited disorder associated with iron overload. The 5' untranslated region of the human HJV mRNA has two upstream open reading frames (uORFs), with 28 and 19 codons formed by two upstream AUGs (uAUGs) sharing the same in-frame stop codon. Here we show that these uORFs decrease the translational efficiency of the downstream main ORF in HeLa and HepG2 cells.
View Article and Find Full Text PDFErythropoietin (EPO) is a key mediator hormone for hypoxic induction of erythropoiesis that also plays important nonhematopoietic functions. It has been shown that EPO gene expression regulation occurs at different levels, including transcription and mRNA stabilization. In this report, we show that expression of EPO is also regulated at the translational level by an upstream open reading frame (uORF) of 14 codons.
View Article and Find Full Text PDF