The use of pesticides, such as glyphosate, has increased due to population growth and the rising demand for food. Plant growth-promoting rhizobacteria (PGPR), such as Streptomyces, offer a more ecologically friendly alternative to the excessive use of pesticides. However, these bacteria undergo a complex life cycle involving the formation of hyphae, mycelia, and spores, which makes standardizing laboratory cultures challenging.
View Article and Find Full Text PDFThe food industry uses indigo carmine (IC) extensively as a blue colorant to make processed food for young children and the general population more attractive. Given that IC can act as a ligand, this raises concerns about its interactions with essential metal ions in the human body. In view of this interest, in the present investigation, the copper(II)/indigo carmine system was thoroughly investigated in aqueous solution and in the solid state, and the detailed structural characterization of the complexes formed between copper(II) and the ligand was performed using spectroscopic methods, complemented with DFT and TD-DFT calculations.
View Article and Find Full Text PDFWe report the synthesis of a new conjugated polymer bearing crown ether moieties, poly[((1-aza-[18]crown-6)carbamido)thiophene-2,5-diyl--1,4-phenylene] (BG2). In water, BG2 forms a dispersion with a slightly cloudy appearance. We have studied the effect of adding surfactants, with different polar head groups, on these polymer-polymer aggregates.
View Article and Find Full Text PDFFollowing previous studies on the complexation in aqueous solutions of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the trivalent metal ions, Al(III) and Ga(III) and various other metal ions, using multinuclear NMR, DFT calculations, UV-vis absorption and luminescence techniques, we have extended our studies on 8-HQS complexation to the trivalent metal ion In(III). The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the In metal ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed and, as has been reported for the complexes of 8-hydroxyquinoline (8-HQ), the dominant complexes of 8-HQS with In(III) show marked differences in the complexation behaviour when compared with the equivalent complexes with the other group 13 cations Al(III) and Ga(III).
View Article and Find Full Text PDFTransport properties of model compounds in aqueous solutions such as amino acids can provide valuable information in order to understand the complex interactions in aqueous solutions as well as the protein stability in water and the relevant factors involved. Informations about the diffusion of amino acids in water and in aqueous solutions of sodium chloride are very scarce, especially for the 5-aminopentanoic acid and 6-aminohexanoic acid. In this study, limiting binary mutual diffusion coefficients at 298.
View Article and Find Full Text PDFMultinuclear (H and C) NMR, and Raman spectroscopy, combined with DFT calculations, provide detailed information on the complexation between U(vi) oxoions and 8-hydroxyquinoline-5-sulfonate (8-HQS) in aqueous solution. Over the concentration region studied, U(vi) oxoions (uranyl ions) form one dominant complex with 8-HQS in water in the pH range 3-6, a mononuclear 1 : 2 (metal : ligand) complex, with the metal centre (UO) coordinated to two 8-HQS ligands, together with one or more water molecules. An additional minor 1 : 1 complex has also been detected for solutions with a 1 : 1 metal : ligand molar ratio.
View Article and Find Full Text PDFWe have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(iii) and Zn(ii) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by DFT calculations and molecular dynamics (MD) simulations. Under appropriate conditions, complexes between 8-HQS and metal ions form rapidly, and have similar electronic, spectroscopic and photophysical properties to the corresponding metal quinolates, such as Alq3. These interact with the cationic surfactants, leading to marked increases in fluorescence intensity.
View Article and Find Full Text PDFMultinuclear ((1)H, (13)C, (95)Mo and (183)W) NMR spectroscopy, combined with DFT calculations, provides detailed information on the complexation between the Mo(VI) and W(VI) oxoions and 8-hydroxyquinoline-5-sulfonate (8-HQS) in aqueous solution. Over the concentration region studied, Mo(VI) and W(VI) oxoions form three homologous complexes with 8-HQS in water in the pH range 2-8. Two of these, detected at pH < 6, are mononuclear 1 : 2 (metal : ligand) isomers, with the metal centre (MO2(2+)) coordinated to two 8-HQS ligands.
View Article and Find Full Text PDFThe kinetically inert chromium(III) tris-(8-hydroxyquinolinate), Crq3, has been synthesized, crystallized from 90% methanol-water, and characterized by MALDI-TOF mass spectrometry, thermogravimetry, FTIR, NMR spectroscopy, and X-ray powder diffraction. It is formed as a methanol solvate, but the solvent can be removed by heating. Large paramagnetic shifts and spectral broadening in (1)H NMR spectra indicate electron delocalization between the metal and the ligand.
View Article and Find Full Text PDFMutual diffusion coefficients, densities and viscosities are reported for aqueous solutions of ethambutol as its dihydrochloride (EMBDHC) at finite concentrations and at 298.15K. From these experimental results and by using the appropriate models (Stokes-Einstein and Hartley), the hydrodynamic radii Rh, the diffusion coefficient at infinitesimal concentration D(0) and the thermodynamic factors, FT, have been estimated, permitting us to have a better understanding of the transport behavior of ethambutol dihydrochloride in solution.
View Article and Find Full Text PDFComplexation of isotactic, syndiotactic, and atactic poly(methacrylic acid), PMA, with trivalent lanthanide ions has been studied in water at a degree of neutralization 0.5. Metal ion binding is shown by quenching of cerium(III) fluorescence, enhancement of Tb(III) luminescence, and lanthanide-induced line broadening in the PMA (1)H NMR spectra.
View Article and Find Full Text PDFMultinuclear ((1)H, (13)C and (71)Ga) magnetic resonance spectroscopy (1D and 2D), DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Ga(III) in aqueous solutions. The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the Ga(3+) ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed on this system and three complexes detected, with (metal : ligand) 1 : 1, 1 : 2 and 1 : 3 stoichiometries, the results being consistent with those previously found for the system Al(III)-8-HQS.
View Article and Find Full Text PDFIntroduction: Excision of large dermatofibrosarcoma protuberans in the anterior aspect of the trunk often results in large surgical defects that frequently dictate the need for microsurgical reconstruction. However, this option is not always available.
Presentation Of Case: The authors describe two patients with very large anterior trunk dermatofibrosarcoma protuberans: one in the epigastric region and the other in the hypogastric region.
Multinuclear ((1)H, (13)C and (27)Al) magnetic resonance spectroscopy (1D and 2D), DFT calculations and fluorescence have been used to study the complexation of 8-hydroxyquinoline-5-sulfonate (8-HQS) with Al(III). The study combines the high sensitivity of luminescence techniques, the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to provide a detailed understanding of the complexation between the Al(3+) ion and 8-HQS. A full speciation study has been performed and over the concentration region studied, the Al(3+) ion forms complexes with 8-HQS in an aqueous solution in the pH range 2-6.
View Article and Find Full Text PDFMuch stronger binding is seen in aqueous solutions between the anionic polyelectrolyte potassium poly(vinyl sulfate) and the substitution labile aluminium(III) than with the kinetically inert chromium(III). This strongly supports the idea that entropy driven water loss from the hydration sphere of the metal ion plays a major role in driving binding of the trivalent metal ion to the polyelectrolyte.
View Article and Find Full Text PDFMultinuclear ((1)H, (13)C) magnetic resonance spectroscopy, DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Zn(ii), in aqueous solution. The study combines the high sensitivity of luminescence techniques, the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a detailed understanding of the complexation between the Zn(2+) ion and 8-HQS. In addition to a complete assignment of the (1)H and (13)C NMR signals of 8-HQS, a full speciation study has been performed.
View Article and Find Full Text PDFIntroduction: The development of Mental Health policies for psychiatric disorders should be driven by a correct knowledge of the socio-demographic, clinical and therapeutic realities of the disease. There is paucity of detailed studies in the Portuguese population that does not allow a direct comparation with other European countries. The objective of the present study is to characterize the sociodemograhic and clinical characteristics of schizophrenia patients in Portugal and the therapeutic patterns.
View Article and Find Full Text PDFIn this perspective we will discuss recent results on structural aspects of peroxocomplexes of transition metals having the d(0) configuration (V(V), Mo(VI), W(VI)), and show how these may be related to the reactivity of these species in both chemical and biological systems. In addition, we will consider the relevance of structural properties to their involvement as important intermediates in industrial and enzymatic catalysis. These will be related to the behaviour of peroxocomplexes of other diamagnetic transition metals, such as those with d(8) (Pd(II), Pt(II)) configurations.
View Article and Find Full Text PDFThe DFT B3LYP/SBKJC method has been used to calculate the gas-phase optimized geometries of the glycolate oxoperoxo vanadium(V) complexes [V(2)O(2)(OO)(2)(gly)(2)](2-), [V(2)O(3)(OO)(gly)(2)](2-) and [VO(OO)(gly)(H(2)O)](-). The (51)V, (17)O, (13)C and (1)H chemical shifts have been calculated for the theoretical geometries in all-electron DFT calculations at the UDFT-IGLO-PW91 level and have been subsequently compared with the experimental chemical shifts in solution. In spite of being applied to the isolated molecules, the calculations allowed satisfactory reproduction of the multinuclear NMR solution chemical shifts of the complexes, suggesting that the theoretical structures are probably close to those in solution.
View Article and Find Full Text PDFMultinuclear ((1)H, (13)C, (17)O, (31)P, (95)Mo, (183)W) magnetic resonance spectroscopy (1D and 2D) has been used to study the complexation of molybdate(VI) and tungstate(VI) with 3-phospho-D-glyceric and 2-phospho-D-glyceric acids. 3-Phospho-D-glyceric acid forms four and five complexes, respectively, with molybdate and tungstate. These have MO(2)(2+) centres, and involve the carboxylate and the adjacent OH groups.
View Article and Find Full Text PDFRelationships have been obtained between intermonomer torsional angle and NMR chemical shifts ((1)H and (13)C) for isolated chains of two of the most important poly(9,9-dialkylfluorenes), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6) and the copolymer poly(9,9-dioctylfluorene-co-[2,1,3]benzothiadiazole-4,7-diyl) (F8BT), using DFT calculations. The correlations provide a model for NMR spectral data interpretation and the basis for analysis of conformational changes in poly(9,9-dialkylfluorene-2,7-diyl)s. The correlations obtained for PF2/6 indicate that the (13)C chemical shifts of the aromatic carbons close to the intermonomer connection (C1, C2, and C3) have minimum values at planar conformations (0 degrees and 180 degrees ) and maximum values at 90 degrees conformations.
View Article and Find Full Text PDFRev Med Inst Mex Seguro Soc
April 2009
Objective: To evaluate the effect of L. tridentata infusion on the development of urinary calculi in a non-metabolic model.
Methods: Male Wistar rats were divided into two groups (n = 10 each).
Various combinations of density functionals and pseudopotentials with associated valence basis-sets are compared for reproducing the known solid-state structure of [V 2O 2(OO) 2 l-lact 2] (2-) cis . Gas-phase optimizations at the B3LYP/SBKJC level have been found to provide a structure that is close to that seen in the solid state by X-ray diffraction. Although this may result in part from error compensation, this optimized structure allowed satisfactory reproduction of solution multinuclear NMR chemical shifts of the complex in all-electron DFT-IGLO calculations (UDFT-IGLO-PW91 level), suggesting that it is probably close to that found in solution.
View Article and Find Full Text PDFCarbohydr Res
September 2004
Multinuclear ((1)H, (13)C, (17)O, (31)P, (95)Mo, (183)W) magnetic resonance spectroscopy (1D and 2D) has been used to show that 6-phospho-d-gluconic acid forms three complexes with tungsten(VI) and six complexes with molybdenum(VI) in aqueous solution, depending on pH and concentration. Two isomeric 1:2 (metal-ligand) complexes are detected both with tungstate(VI) and molybdate(VI), having MO(2)(2+) centres and involving the carboxylate and the adjacent OH groups in addition to one 2:1 (metal-ligand) complex possessing a M(2)O(5)(2+) centre, with the ligand being coordinated by the carboxylate group and the three consecutive OH groups in positions 2, 3 and 4. Molybdate(VI) forms three additional species, which are not detected with tungstate.
View Article and Find Full Text PDF