Publications by authors named "Luisa Ojeda"

Binge drinking (BD) is the most common alcohol consumption model for adolescents, and has recently been related to the generation of high oxidation and insulin resistance (IR). White adipose tissue (WAT) is a target organ for insulin action that regulates whole-body metabolism by secreting adipokines. The present study aimed to analyse the oxidative, inflammatory, energetic and endocrine profile in the WAT of BD-exposed adolescent rats, to obtain an integrative view of insulin secretion and WAT in IR progression.

View Article and Find Full Text PDF

Background: Binge drinking (BD) during adolescence is related to cardiovascular alterations. Selenium (Se) is an essential trace element with antioxidant, anti-inflammatory and antiapoptotic properties, essential for correct heart function.

Objectives: To study the protective cardiovascular effects of selenium in adolescent rats exposed to a BD-like procedure.

View Article and Find Full Text PDF

There are disorders in children, covered by the umbrella term "fetal alcohol spectrum disorder" (FASD), that occur as result of alcohol consumption during pregnancy and lactation. They appear, at least in part, to be related to the oxidative stress generated by ethanol. Ethanol metabolism generates reactive oxygen species and depletes the antioxidant molecule glutathione (GSH), leading to oxidative stress and lipid and protein damage, which are related to growth retardation and neurotoxicity, thereby increasing the incidence of FASD.

View Article and Find Full Text PDF

Aim: The fetal alcohol exposition during pregnancy leads to different disorders in offspring, related to the oxidative stress generated by alcohol. It is well-documented that there is an impairment of the antioxidant selenoprotein Glutathione peroxidase (GPx) activity in ethanol offspring during the embryo period, although no-one has described Selenium (Se) status. The aim is to analyze for the first time Se deposits in vivo and Se's biological implication in embryos and placenta after alcohol exposure and in offspring whose mothers continued to drink ethanol during lactation.

View Article and Find Full Text PDF

Alcohol intermittent binge drinking (BD) during adolescence decreases the levels of selenium (Se), a trace element that plays a key biological role against oxidative damage in hepatocytes through different selenoproteins such as the antioxidant enzymes glutathione peroxidases (GPx1 and Gpx4) and selenoprotein P (SelP). In this context, it has been found that GPx4 has an essential antioxidant role in mitochondria modulating the apoptosis and NF-kB activation (a factor intimately related to apoptosis and immune function). To further investigate the effectiveness of selenium supplementation in oxidative balance, inflammation and apoptosis, the present study examined the protective effects of 0.

View Article and Find Full Text PDF

Objectives: Since Selenium (Se) forms part of glutathione peroxidase (GPx), which appears to have a dual role in Metabolic Syndrome (MS), this study evaluates the implication of Se in the transmission of this pathology to the progeny.

Methods: Se body distribution, glucose, triglycerides, cholesterol, insulin and metabolic hormones [glucagon, leptin, gastric inhibitory polypeptide (GIP), and triiodothyronine (T3)], growth factors, receptor activator of nuclear factor kappa-B ligand (RANK-L) and osteopontin, as well as oxidative hepatic balance in the offspring of dams exposed to a fructose-rich diet (65%) with normal Se content (0.01 ppm) during gestation and lactation, were measured according to sex.

View Article and Find Full Text PDF

Purpose: Selenium (Se) has a dual role in metabolic syndrome (MS) development as it has an antioxidant action against both "good" and "bad" reactive oxygen species. This study evaluates Se body profile in dams which present MS during gestation and lactation, in order to elucidate a normal dietary Se's implication in this pathology.

Method: Rats were randomized into control (C) and fructose (F) groups.

View Article and Find Full Text PDF

Aims: Antioxidant system abnormalities have been associated with ethanol consumption. This study examines the effects of chronic ethanol consumption on oxidative balance, including selenium (Se) levels in alcoholic patients with or without liver disease, and if these measurements could be indicative of liver disease.

Main Methods: Serum Se levels, antioxidant enzymes' activities, malondialdehyde (MDA) and protein carbonyl (PC) were determined in three groups of patients: alcoholics without liver disease, alcoholics with liver disease, and non-alcoholics with liver disease; and in healthy volunteers.

View Article and Find Full Text PDF

Ethanol exposure during gestation and lactation decreases selenium (Se) intake, disrupting body Se balance and inducing oxidative stress in rat offspring. Selenium-supplemented diet (0.5 ppm) was administered to ethanol-exposed (20% v/v) dams during gestation and lactation.

View Article and Find Full Text PDF

Selenium (Se), an essential trace metal, is important in both growth and reproduction and is the constituent of different selenoproteins. The glutathione peroxidase (GPx) family is the most studied as it prevents oxidative stress. Liver oxidation is considered as another mechanism involved in low birth weight.

View Article and Find Full Text PDF

Despite Fe deficiency and overload having been widely studied, no studies are available about the influence of milk consumption on antioxidant defence and lipid peroxidation during the course of these highly prevalent cases. The objective of the present study was to assess the influence of cow or goat milk-based diets, either with normal or Fe-overload, on antioxidant defence and lipid peroxidation in the liver, brain and erythrocytes of control and anaemic rats after chronic Fe repletion. Weanling male rats were randomly divided into two groups: a control group receiving a normal-Fe diet (45 mg/kg) and an anaemic group receiving a low-Fe diet (5 mg/kg) for 40 d.

View Article and Find Full Text PDF

The nutritional deficiencies provoked by ethanol consumption, during gestation or lactation, can contribute to multiple birth defects in offspring. In order to improve our knowledge about selenium (Se) distribution in pups exposed to ethanol, the present study evaluated the effect of this drug on intestinal development and determined its action on duodenal absorption of selenomethionine (Se-Met). To determinate if supplementation could improve Se absorption and its serum values, we used two antioxidant supplemented regimens on dams, with selenium alone or selenium plus folic acid, and obtained six groups of pups: C (control), A (alcohol), CS (control + Se), AS (alcohol + Se), CFS (control + Se + folic acid) and AFS (alcohol + Se + folic acid).

View Article and Find Full Text PDF