Publications by authors named "Luisa Lang"

Background And Aim: We recently identified protein kinase N1 (PKN1) as a master regulator of brain development. However, its function in the adult brain has not been clearly established. In this study, we assessed the cerebral energetic phenotype of wildtype (WT) and global Pkn1 knockout (Pkn1) animals under physiological and pathophysiological conditions.

View Article and Find Full Text PDF

Objective: Glucose-1,6-bisphosphate (G-1,6-BP), a byproduct of glycolysis that is synthesized by phosphoglucomutase 2 like 1 (PGM2L1), is particularly abundant in neurons. G-1,6-BP is sensitive to the glycolytic flux, due to its dependence on 1,3-bisphosphoglycerate as phosphate donor, and the energy state, due to its degradation by inosine monophosphate-activated phosphomannomutase 1. Since the exact role of this metabolite remains unclear, our aim was to elucidate the specific function of G-1,6-BP in the brain.

View Article and Find Full Text PDF

Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM).

View Article and Find Full Text PDF

We recently identified PKN1 as a developmentally active gatekeeper of the transcription factor neuronal differentiation-2 (NeuroD2) in several brain areas. Since NeuroD2 plays an important role in amacrine cell (AC) and retinal ganglion cell (RGC) type formation, we aimed to study the expression of NeuroD2 in the postnatal retina of WT and animals, with a particular focus on these two cell types. We show that PKN1 is broadly expressed in the retina and that the gross retinal structure is not different between both genotypes.

View Article and Find Full Text PDF