Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFInsect pollinator biodiversity is changing rapidly, with potential consequences for the provision of crop pollination. However, the role of land use-climate interactions in pollinator biodiversity changes, as well as consequent economic effects via changes in crop pollination, remains poorly understood. We present a global assessment of the interactive effects of climate change and land use on pollinator abundance and richness and predictions of the risk to crop pollination from the inferred changes.
View Article and Find Full Text PDFBackground: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies.
View Article and Find Full Text PDFSeventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2021
This special issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). Here, we combine this assessment and previously published relationships between NCP and delivery on the UN Sustainable Development Goals (SDGs) to infer contributions of soils to the SDGs. We show that in addition to contributing positively to the delivery of all NCP, soils also have a role in underpinning all SDGs.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2021
Ongoing environmental changes are affecting physical, chemical and biological soil components. Evidence of impacts of soil changes on pollinators' and seed dispersers' behaviour, fitness and density is scarce, but growing. Here, we reviewed information on such impacts and on a number of mechanisms that may explain its propagation, taking into account the full range of resources required by the large and diverse number of species of these two important functional groups.
View Article and Find Full Text PDFWhile an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood.
View Article and Find Full Text PDFMutualistic interactions between plants and pollinators play an essential role in the organization and persistence of biodiversity. The structure of interaction networks mediates the resilience of local communities and ecosystem functioning to environmental changes. Hence, network structure conservation may be more critical for maintaining biodiversity and ecological services than the preservation of isolated species in changing landscapes.
View Article and Find Full Text PDFHuman land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change.
View Article and Find Full Text PDFPollinators are experiencing declines globally, negatively affecting the reproduction of wild plants and crop production. Well-known drivers of these declines include climatic and nutritional stresses, such as a change of dietary resources due to the degradation of habitat quality. Understanding potential synergies between these two important drivers is needed to improve predictive models of the future effects of climate change on pollinator declines.
View Article and Find Full Text PDFThe demand for insect-pollinated crops is increasing. Conventional agricultural intensification heavily relies on increased input of fertilizers, which can have negative effects on local biodiversity. Such effects may be particularly accentuated in biodiversity hotspots that are naturally nutrient-poor.
View Article and Find Full Text PDFAgricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts.
View Article and Find Full Text PDFPlant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition).
View Article and Find Full Text PDFAcross the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow.
View Article and Find Full Text PDFSeveral bee species are experiencing significant population declines. As bees exclusively rely on pollen for development and survival, such declines could be partly related to changes in their host plant abundance and quality. Here, we investigate whether generalist bumblebee species, with stable population trends over the past years, adapted their diets in response to changes in the distribution and chemical quality of their pollen resources.
View Article and Find Full Text PDFChanges in climate and land use can have important impacts on biodiversity. Species respond to such environmental modifications by adapting to new conditions or by shifting their geographic distributions towards more suitable areas. The latter might be constrained by species' functional traits that influence their ability to move, reproduce or establish.
View Article and Find Full Text PDFEcological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America.
View Article and Find Full Text PDFSpecies distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2016
Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others.
View Article and Find Full Text PDFThere is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species.
View Article and Find Full Text PDFChange in land cover is thought to be one of the key drivers of pollinator declines, and yet there is a dearth of studies exploring the relationships between historical changes in land cover and shifts in pollinator communities. Here, we explore, for the first time, land cover changes in England over more than 80 years, and relate them to concurrent shifts in bee and wasp species richness and community composition. Using historical data from 14 sites across four counties, we quantify the key land cover changes within and around these sites and estimate the changes in richness and composition of pollinators.
View Article and Find Full Text PDFCo-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible.
View Article and Find Full Text PDFChanges in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use).
View Article and Find Full Text PDF