Postsynthetic modification of metal-organic frameworks is an important method to tailor their properties. We report on the nitrile oxide-alkyne cycloaddition (NOAC) as a modification tool, a reaction requiring neither strained alkynes nor a catalyst. This is demonstrated with the reaction of nitrile oxides with PEPEP-PIZOF-15 and -19 at room temperature.
View Article and Find Full Text PDFWe report three platinum acetylide acrylate monomers containing known two-photon absorption (TPA) chromophores and their covalent incorporation into polymers via free radical polymerization with methyl methacrylate. The photophysical properties of the platinum acetylide monomers and resulting poly(methyl methacrylate) (PMMA) copolymers were investigated to determine if the one- and two-photon photophysical properties of the chromophores were maintained in the copolymers. The photophysical properties of the series of copolymers were studied in solution and solid state with minimum shifts exhibited in the ground state absorption, photoluminescence, and triplet-triplet transient absorption spectra.
View Article and Find Full Text PDF