Flooding is a frequent environmental stress that reduces soybean () growth and grain yield in many producing areas in the world, such as, e.g., in the United States, Southeast Asia and Southern Brazil.
View Article and Find Full Text PDFOsmotins are multifunctional proteins belonging to the thaumatin-like family related to plant stress responses. To better understand the functions of soybean osmotins in drought stress response, the current study presents the characterisation of four previously described proteins and a novel putative soybean osmotin (GmOLPa-like). Gene and protein structure as well as gene expression analyses were conducted on different tissues and developmental stages of two soybean cultivars with varying dehydration sensitivities (BR16 and EMB48 are highly and slightly sensitive, respectively).
View Article and Find Full Text PDFOsmotin is an important multifunctional protein related to plant stress responses and is classified into the thaumatin-like protein (TLP) family. Using genome-wide and phylogenetic approaches, we investigated osmotin origin and diversification across plant TLP evolution. Genomic and protein in silico analysis tools were also accessed and considered for the study conclusions.
View Article and Find Full Text PDFDrought is today, and perhaps even more in the future, the main challenge for grain crops, resulting in a drastic yield reduction. Thus, it is of great interest to obtain soybean genotypes tolerant to water deficit. The drought tolerance trait is difficult to obtain through classical breeding due to its polygenic basis.
View Article and Find Full Text PDFIn plants, ureases have been related to urea degradation, to defense against pathogenic fungi and phytophagous insects, and to the soybean-Bradyrhizobium japonicum symbiosis. Two urease isoforms have been described for soybean: the embryo-specific, encoded by Eu1 gene, and the ubiquitous urease, encoded by Eu4. A third urease-encoding locus exists in the completed soybean genome.
View Article and Find Full Text PDF