Given the association between vitamin D deficiency and risk for cardiovascular disease, we used machine learning approaches to establish a model to predict the probability of deficiency. Determination of serum levels of 25-hydroxy vitamin D (25(OH)D) provided the best assessment of vitamin D status, but such tests are not always widely available or feasible. Thus, our study established predictive models with high sensitivity to identify patients either unlikely to have vitamin D deficiency or who should undergo 25(OH)D testing.
View Article and Find Full Text PDFCertain inflammatory biomarkers, such as interleukin-6, interleukin-1, C-reactive protein (CRP), and fibrinogen, are prototypical acute-phase parameters that can also be predictors of cardiovascular disease. However, this inflammatory response can also be linked to the development of type 2 diabetes mellitus (T2DM). We performed a cross-sectional, retrospective study of hypertensive patients in an outpatient setting.
View Article and Find Full Text PDFPrediabetes is a type of hyperglycemia in which patients have blood glucose levels above normal but below the threshold for type 2 diabetes mellitus (T2DM). Prediabetic patients are considered to be at high risk for developing T2DM, but not all will eventually do so. Because it is difficult to identify which patients have an increased risk of developing T2DM, we developed a model of several clinical and laboratory features to predict the development of T2DM within a 2-year period.
View Article and Find Full Text PDFThe primary objective of our research was to compare the performance of data analysis to predict vitamin D deficiency using three different regression approaches and to evaluate the usefulness of incorporating machine learning algorithms into the data analysis in a clinical setting. We included 221 patients from our hypertension unit, whose data were collected from electronic records dated between 2006 and 2017. We used classical stepwise logistic regression, and two machine learning methods [least absolute shrinkage and selection operator (LASSO) and elastic net].
View Article and Find Full Text PDFFew studies have addressed the predictive value of arterial stiffness determined by pulse wave velocity (PWV) in a high-risk population with no prevalent cardiovascular disease and with obesity, hypertension, hyperglycemia, and preserved kidney function. This longitudinal, retrospective study enrolled 88 high-risk patients and had a follow-up time of 12.4 years.
View Article and Find Full Text PDFWe investigated the prevalence and the most relevant features of nonalcoholic steatohepatitis (NASH), a stage of nonalcoholic fatty liver disease, (NAFLD) in which the inflammation of hepatocytes can lead to increased cardiovascular risk, liver fibrosis, cirrhosis, and the need for liver transplant. We analyzed data from 2239 hypertensive patients using descriptive statistics and supervised machine learning algorithms, including the least absolute shrinkage and selection operator and random forest classifier, to select the most relevant features of NASH. The prevalence of NASH among our hypertensive patients was 11.
View Article and Find Full Text PDFBackground: The aim of our study was to determine whether prediabetes increases cardiovascular (CV) risk compared to the non-prediabetic patients in our hypertensive population. Once this was achieved, the objective was to identify relevant CV prognostic features among prediabetic individuals.
Methods: We included hypertensive 1652 patients.