Identifying the main predictors of species' extinction risk while accounting for the effects of spatial and phylogenetic structures in the data is key to preventing species loss in tropical forests through adequate conservation practices. We recorded 22 705 precise geographical locations of primate occurrence across four major geographic realms (Neotropics, mainland Africa, Madagascar and Asia) to assess predictors of threat status using a novel Bayesian spatio-phylogenetic approach. We estimated the relative contributions of fixed factors (forest amount, body mass, home range, diel activity, locomotion, evolutionary distinctiveness and climatic instability) and random factors (space and phylogeny) to primate extinction risk.
View Article and Find Full Text PDFAngiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework.
View Article and Find Full Text PDFThe combination of morphometrics, phylogenetic comparative methods, and open data sets has renewed interest in relating morphology to adaptation and ecological opportunities. Focusing on the Caviomorpha, a well-studied mammalian group, we evaluated patterns in research and data sharing in studies relating form and function. Caviomorpha encompasses a radiation of rodents that is diverse both taxonomically and ecologically.
View Article and Find Full Text PDFMultiple species of viruses circulate in wild mammals, some of them potentially causing zoonosis. Most of the suspected viral zoonotic diseases affecting human patients remain unidentified with regard to their aetiological agent. The aim of this study is to summarize the state of knowledge of the viral richness associated with wild mammals in Mexico throughout 1900-2018 and their relationship with human cases.
View Article and Find Full Text PDFEvery 2 years, the conservation community comes together at The Society for Conservation Biology's International Congress for Conservation Biology (ICCB) to share new developments in conservation science and practice. Publication of findings presented at conferences in scientific journals adds to the permanent record and helps increase the potential impact of the work presented. However, quantitative research on publication rates for meetings relevant to conservation is lacking.
View Article and Find Full Text PDFTo understand the functional meaning of morphological features, we need to relate what we know about morphology and ecology in a meaningful, quantitative framework. Closely related species usually share more phenotypic features than distant ones, but close relatives do not necessarily have the same ecologies. Rodents are the most diverse group of living mammals, with impressive ecomorphological diversification.
View Article and Find Full Text PDFNonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia.
View Article and Find Full Text PDFComparative extinction risk analysis is a common approach for assessing the relative plight of biodiversity and making conservation recommendations. However, the usefulness of such analyses for conservation practice has been questioned. One reason for underperformance may be that threats arising from global environmental changes (e.
View Article and Find Full Text PDFPhylogenetic information is becoming a recognized basis for evaluating conservation priorities, but associations between extinction risk and properties of a phylogeny such as diversification rates and phylogenetic lineage ages remain unclear. Limited taxon-specific analyses suggest that species in older lineages are at greater risk. We calculate quantitative properties of the mammalian phylogeny and model extinction risk as an ordinal index based on International Union for Conservation of Nature Red List categories.
View Article and Find Full Text PDF