: Access to a primary care provider is not guaranteed for many living in rural settings. Notably, rural populations experience a higher degree of burden from chronic diseases compared to urban-dwellers. For example, diabetes can go undiagnosed and undertreated with lack of primary care.
View Article and Find Full Text PDFJ Am Pharm Assoc (2003)
October 2024
Introduction: The rise in global temperatures due to climate change has escalated the frequency and intensity of wildfires worldwide. Beyond their direct impact on physical health, these wildfires can significantly impact mental health. Conventional mental health studies predominantly rely on surveys, often constrained by limited sample sizes, high costs, and time constraints.
View Article and Find Full Text PDFJ Am Pharm Assoc (2003)
March 2024
Background: Nearly half of adults in America have hypertension (HTN), and only approximately 1 in 4 adults has their blood pressure (BP) under control. High BP is more common in African Americans adults, and BP control is lower among minority adults. Pharmacist-led interventions for HTN have been shown to be effective in improving BP control and reducing the risk of cardiovascular events.
View Article and Find Full Text PDFBackground: Early identification of mental disorder symptoms is crucial for timely treatment and reduction of recurring symptoms and disabilities. A tool to help individuals recognize warning signs is important. We posit that such a tool would have to rely on longitudinal analysis of patterns and trends in the individual's daily activities and mood, which can now be captured through data from wearable activity trackers, speech recordings from mobile devices, and the individual's own description of their mental state.
View Article and Find Full Text PDFIn this work, we evaluate the effectiveness of a multicomponent program that includes psychoeducation in academic stress, mindfulness training, and biofeedback-assisted mindfulness, while enhancing the Resilience to Stress Index (RSI) of students through the control of autonomic recovery from psychological stress. Participants are university students enrolled in a program of excellence and are granted an academic scholarship. The dataset consists of an intentional sample of 38 undergraduate students with high academic performance, 71% (27) women, 29% (11) men, and 0% (0) non-binary, with an average age of 20 years.
View Article and Find Full Text PDFThis study proposes a new index to measure the resilience of an individual to stress, based on the changes of specific physiological variables. These variables include electromyography, which is the muscle response, blood volume pulse, breathing rate, peripheral temperature, and skin conductance. We measured the data with a biofeedback device from 71 individuals subjected to a 10-min psychophysiological stress test.
View Article and Find Full Text PDFIn "A Pharmacist's Role in A Dental Clinic: Establishing a Collaborative and Interprofessional Education Site" written by Kalin L. Johnson, et al., the article discusses the importance of having pharmacists in non-traditional settings, such as a university dental clinic, and the benefits of incorporating them into an interprofessional team.
View Article and Find Full Text PDFMulti-sensor fusion refers to methods used for combining information coming from several sensors (in some cases, different ones) with the aim to make one sensor compensate for the weaknesses of others or to improve the overall accuracy or the reliability of a decision-making process. Indeed, this area has made progress, and the combined use of several sensors has been so successful that many authors proposed variants of fusion methods, to the point that it is now hard to tell which of them is the best for a given set of sensors and a given application context. To address the issue of choosing an adequate fusion method, we recently proposed a machine-learning data-driven approach able to predict the best merging strategy.
View Article and Find Full Text PDFIn Ambient Intelligence (AmI), the activity a user is engaged in is an essential part of the context, so its recognition is of paramount importance for applications in areas like sports, medicine, personal safety, and so forth. The concurrent use of multiple sensors for recognition of human activities in AmI is a good practice because the information missed by one sensor can sometimes be provided by the others and many works have shown an accuracy improvement compared to single sensors. However, there are many different ways of integrating the information of each sensor and almost every author reporting sensor fusion for activity recognition uses a different variant or combination of fusion methods, so the need for clear guidelines and generalizations in sensor data integration seems evident.
View Article and Find Full Text PDFSensors are becoming more and more ubiquitous as their price and availability continue to improve, and as they are the source of information for many important tasks. However, the use of sensors has to deal with noise and failures. The lack of reliability in the sensors has led to many forms of redundancy, but simple solutions are not always the best, and the precise way in which several sensors are combined has a big impact on the overall result.
View Article and Find Full Text PDFIn this work, we present a first step towards an efficient one-class classifier well suited for mobile devices to be implemented as part of a user application coupled with wearable sensors in the context of personal risk detection. We compared one-class Support Vector Machine (ocSVM) and OCKRA (One-Class K-means with Randomly-projected features Algorithm). Both classifiers were tested using four versions of the publicly available PRIDE (Personal RIsk DEtection) dataset.
View Article and Find Full Text PDFThis study introduces the One-Class K-means with Randomly-projected features Algorithm (OCKRA). OCKRA is an ensemble of one-class classifiers built over multiple projections of a dataset according to random feature subsets. Algorithms found in the literature spread over a wide range of applications where ensembles of one-class classifiers have been satisfactorily applied; however, none is oriented to the area under our study: personal risk detection.
View Article and Find Full Text PDFThe Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level.
View Article and Find Full Text PDF