Publications by authors named "Luis Taboada"

This study aimed to evaluate the dose-dependent brain temperature effects of transcranial photobiomodulation (t-PBM). Thirty adult subjects with major depressive disorder were randomized to three t-PBM sessions with different doses (low: 50 mW/cm, medium: 300 mW/cm, high: 850 mW/cm) and a sham treatment. The low and medium doses were administered in continuous wave mode, while the high dose was administered in pulsed wave mode.

View Article and Find Full Text PDF

Background: Small pilot studies have suggested that transcranial photobiomodulation (tPBM) could help reduce symptoms of neurological conditions, such as depression, traumatic brain injury, and autism spectrum disorder (ASD).

Objective: To examine the impact of tPBM on the symptoms of ASD in children aged two to six years.

Method: We conducted a randomized, sham-controlled clinical trial involving thirty children aged two to six years with a prior diagnosis of ASD.

View Article and Find Full Text PDF

The use of light for therapeutic applications requires light-absorption by cellular chromophores at the target tissues and the subsequent photobiomodulation (PBM) of cellular biochemical processes. For transdermal deep tissue light therapy (tDTLT) to be clinically effective, a sufficiently large number of photons must reach and be absorbed at the targeted deep tissue sites. Thus, delivering safe and effective tDTLT requires understanding the physics of light propagation in tissue.

View Article and Find Full Text PDF

Transcranial photobiomodulation (t-PBM) with near-infrared (NIR) light might represent a treatment for major depressive disorder (MDD). However, the dosimetry of administered t-PBM varies widely. We tested the efficacy of t-PBM with low irradiance, low energy per session, and low number of sessions in individuals with MDD.

View Article and Find Full Text PDF

Introduction: Mental, neurological and substance use conditions lead to tremendous suffering, yet globally access to effective care is limited. In line with the 13th General Programme of Work (GPW 13), in 2019 the World Health Organization (WHO) launched the WHO Special Initiative for Mental Health: Universal Health Coverage for Mental Health to advance mental health policies, advocacy, and human rights and to scale up access to quality and affordable care for people living with mental health conditions. Six countries were selected as 'early-adopter' countries for the WHO Special Initiative for Mental Health in the initial phase.

View Article and Find Full Text PDF

Empyema is a serious complication of pneumonia and has been reported to have a mortality rate of 8.7%. For methicillin-resistant (MRSA) empyema, treatment includes drainage and specific antibiotics such as vancomycin and linezolid.

View Article and Find Full Text PDF

Background: Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain.

Objective: We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF).

Methods: We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.

View Article and Find Full Text PDF

The objective of this retrospective review was to examine the impact that adding photobiomodulation therapy (PBMt) to rehabilitation therapy had on the pathology of degenerative myelopathy (DM) in canine patients. Canine DM is a progressive, fatal neurodegenerative disease for which there exists a dearth of effective treatments, limiting clinicians to pursue symptom palliation. Clinical records of dogs referred for presumed DM to a specialty rehabilitation facility were screened for patients meeting study criteria.

View Article and Find Full Text PDF

Tendon rupture can occur at any age and is commonly treated nonoperatively, yet can result in persisting symptoms. Thus, a need exists to improve nonoperative treatments of injured tendons. Photobiomodulation (PBM) therapy has shown promise in the clinic and is hypothesized to stimulate mitochondrial-related metabolism and improve healing.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy is a promising and noninvasive approach to stimulate neuronal function and improve brain repair. The optimization of PBM parameters is important to maximize effectiveness and tolerability. Several studies have reported on the penetration of visible-to-near-infrared (NIR) light through various animal and human tissues.

View Article and Find Full Text PDF

Background: This study assessed the safety and efficacy of deep tissue laser therapy on the management of pain, functionality, systemic inflammation, and overall quality of life of older adults with painful diabetic peripheral neuropathy.

Methods: The effects of deep tissue laser therapy (DTLT) were assessed in a randomized, double-masked, sham-controlled, interventional trial. Forty participants were randomized (1:1) to receive either DTLT or sham laser therapy (SLT).

View Article and Find Full Text PDF

Damage-associated molecular pattern signals may play key roles in mediating non-cell autonomous effects of pre and post-conditioning. Here, we show that near-infrared (NIR) light stimulation of astrocytes increases a calcium-dependent secretion of the prototypical DAMP, HMGB1, which may then accelerate endothelial progenitor cell (EPC) accumulation after stroke. Conditioned media from NIR-stimulated astrocytes increased EPC proliferation in vitro, and blockade of HMGB1 with siRNA diminished the effect.

View Article and Find Full Text PDF

Given that the cadmium (Cd) toxicity could be due to its interference with the calcium (Ca) homeostasis, the aim of this work was to study the effect of Cd over the presence, distribution and volume density (Vv) of Ca and Ca-ATPase in the secretory cells of the pars preconvoluta (PPC) and the pars convoluta (pc) in . The severe effect of the xenobiotic (CdCl 2.5 mg/kg) in sexually matured females was evaluated.

View Article and Find Full Text PDF

Transcranial photobiomodulation is a potential innovative noninvasive therapeutic approach for improving brain bioenergetics, brain function in a wide range of neurological and psychiatric disorders, and memory enhancement in age-related cognitive decline and neurodegenerative diseases. We describe a laboratory protocol for transcranial photobiomodulation therapy (PBMT) in mice. Aged BALB/c mice (18 months old) are treated with a 660 nm laser transcranially, once daily for 2 weeks.

View Article and Find Full Text PDF

Our objective was to test the antidepressant effect of transcranial photobiomodulation (t-PBM) with near-infrared (NIR) light in subjects suffering from major depressive disorder (MDD). t-PBM with NIR light is a new treatment for MDD. NIR light is absorbed by mitochondria; it boosts cerebral metabolism, promotes neuroplasticity, and modulates endogenous opioids, while decreasing inflammation and oxidative stress.

View Article and Find Full Text PDF

Introduction:  Weight distribution and off-loading at the stance are commonly used subjective assessments during the orthopaedic examination. The clinical relevance, sensitivity and specificity of limb off-loading have not yet been established. The aim of the study was to assess off-loading on a weight distribution platform (WDP) and determine the sensitivity and specificity at various cut-off points for the detection of objective lameness (OL) and orthopaedic disease (OD).

View Article and Find Full Text PDF

Noninvasive photobiomodulation therapy (PBMT) of spinal cord disease remains speculative due to the lack of evidence for whether photobiomodulatory irradiances can be transcutaneously delivered to the spinal cord under a clinically acceptable PBMT surface irradiation protocol. We developed a flexible nine-channel photodetection probe for deployment within the spinal canal of a cadaver dog after hemilaminectomy to measure transcutaneously transmitted PBMT irradiance at nine sites over an eight-cm spinal canal length. The probe was built upon a 6.

View Article and Find Full Text PDF

Transcranial near-infrared radiation (NIR) is an innovative treatment for major depressive disorder (MDD), but clinical evidence for its efficacy is limited. Our objective was to investigate the tolerability and efficacy of NIR in patients with MDD. We conducted a proof of concept, prospective, double-blind, randomized study of 6 sessions of NIR versus sham treatment for patients with MDD, using a crossover design.

View Article and Find Full Text PDF

Transcranial near-infrared laser therapy (TLT) improves stroke outcome in animal models. Adequate laser doses are necessary to exert therapeutic effects. However, applying higher laser energy may cause cortical tissue heating and exacerbate stroke injury.

View Article and Find Full Text PDF

Background And Objective: Transcranial laser therapy (TLT) has been used successfully for the treatment of stroke in animal models and clinical trials. These results support the hypothesis that TLT could be used to treat other central nervous system conditions, such as depression. Current therapy for depression emphasizes pharmaco-therapeutics.

View Article and Find Full Text PDF

Near-infrared transcranial laser therapy (TLT) has been found to modulate various biological processes including traumatic brain injury (TBI). Following TBI in mice, in this study we assessed the possibility of various near-infrared TLT modes (pulsed versus continuous) in producing a beneficial effect on the long-term neurobehavioral outcome and brain lesions of these mice. TBI was induced by a weight-drop device, and neurobehavioral function was assessed from 1 h to 56 days post-trauma using the Neurological Severity Score (NSS).

View Article and Find Full Text PDF

Background And Objectives: In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons.

View Article and Find Full Text PDF

Transcranial laser therapy (TLT) was tested for efficacy in a mouse model of Alzheimer's disease (AD) using a near-infrared energy laser system. TLT is thought to stimulate ATP production, increase mitochondrial activity, and help maintain neuronal function. Studies were performed to determine the effect of TLT in an amyloid-β protein precursor (AβPP) transgenic mouse model.

View Article and Find Full Text PDF

Background And Objective: Growing interest exists in the use of near-infrared laser therapies for the treatment of numerous neurologic conditions, including acute ischemic stroke, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. In consideration of these trends, the objective of this study was to evaluate the long-term safety of transcranial laser therapy with continuous-wave (CW) near-infrared laser light (wavelength, 808 ± 10 nm, 2-mm diameter) with a nominal radiant power of 70 mW; power density, 2,230 mW/cm(2), and energy density, 268 J/cm(2) at the scalp (10 mW/cm(2) and 1.2 J/cm(2) at the cerebral cortical surface) in healthy Sprague-Dawley rats.

View Article and Find Full Text PDF

Background And Objective: Low level light (or laser) therapy (LLLT) is a rapidly growing modality used in physical therapy, chiropractic, sports medicine and increasingly in mainstream medicine. LLLT is used to increase wound healing and tissue regeneration, to relieve pain and inflammation, to prevent tissue death, to mitigate degeneration in many neurological indications. While some agreement has emerged on the best wavelengths of light and a range of acceptable dosages to be used (irradiance and fluence), there is no agreement on whether continuous wave or pulsed light is best and on what factors govern the pulse parameters to be chosen.

View Article and Find Full Text PDF