Background: The availability of new surface enhanced Raman scattering (SERS) substrates is essential to develop quantitative analytical methods. Electrochemistry is an easy, fast and reproducible methodology to prepare SERS substrates on screen-printed electrodes (SPEs).
Results: This work proposes new SPEs based on a three-electrode system all made of silver.
UV-vis spectroelectrochemistry is assessed as a tool for the diagnosis and quantitative investigation of the incidence of comproportionation in multielectron transfer processes. Thus, the sensitivity of the limiting current chronoabsorptometric signals related to the different redox states to the comproportionation kinetics is studied theoretically for different working modes (normal and parallel light beam arrangements) and mass transport regimes (from semi-infinite to thin layer diffusion). The theoretical results are applied to the spectroelectrochemical study of the two-electron reduction of the anthraquinone-2-sulfonate in alkaline aqueous solution, tuning the thermodynamic favorability of the comproportionation reaction through the electrolyte cation.
View Article and Find Full Text PDF